A young patient provides a blood sample to a study nurse in Machala, Ecuador. Un paciente joven provee una muestra de sangre a una enfermera del estudio en Machala, Ecuador. Image credit: Dany Krom

GAINESVILLE, FL – Helping patients with dengue can be challenging – especially in countries with multiple diseases spread by mosquitoes. Dengue, chikungunya, and Zika are viruses spread by the same type of mosquito; all three viruses are present in Ecuador and many other countries in Latin America and the Caribbean. Patients infected with one of these viruses tend to have similar, indistinct symptoms, which can make it difficult for a clinician to determine which disease is affecting the patient and which treatment steps to take. Most critically, the clinician must determine whether the patient should be checked into the hospital for close monitoring, or if the patient can be sent home to rest and recover. Failing to hospitalize a sick patient can be a deadly mistake, but sending too many patients to be hospitalized can overwhelm health systems and increase costs to the public health sector.

New clinical prediction research through a collaboration between the Quantitative Disease Ecology and Conservation (QDEC) Lab Group at the University of Florida and SUNY—Upstate Medical University tests the ability of machine learning to predict whether these patients should be hospitalized or not, using patient information collected by the clinician. The study, Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection was recently published in PLoS Neglected Tropical Diseases and was completed through collaborative efforts between students and researchers at the University of Florida, SUNY – Upstate Medical University, Cornell University, and the Ecuadorian Ministry of Public Health. Patient information and laboratory test results were collected from patients recruited into an ongoing arbovirus surveillance study as well as hundreds of paper medical records that were processed using machine learning.

Machine learning is a method wherein data are used to make predictions by applying a model or series of calculations (called algorithms) to the data. There are hundreds of machine learning algorithms – some might work really well or might fail entirely to make accurate predictions for a given dataset. “Our approach is unique in that we don’t assume that one algorithm is superior – we test and compare multiple algorithms to find the one that works best for our data” says Dr. Rachel Sippy, a postdoctoral researcher with QDEC and SUNY–Upstate Medical University and lead author of the paper. “Now that we have found an algorithm that works well with these types of patient information, we can test it on new groups of patients and confirm that it works under many circumstances.”

The published research lays the groundwork for the creation of a tool that clinicians could use at the bedside. The authors envision a mobile app where the clinician enters the patient data and receives a recommendation to hospitalize the patient or send them home. “While the experience of clinicians could never be replaced with an app, these kinds of decision-support tools can provide valuable additional information that can be taken into account by the clinician who is faced with making a potentially lifesaving decision,” explains Dr. Anna Stewart Ibarra, co-author of the publication.

Read Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection, in PLoS Neglected Tropical Diseases.

Predicciones de Aprendizaje Automático de Pacientes con Dengue Arrojan Resultados Prometedores

GAINESVILLE, FL – Ayudar a los pacientes con dengue puede ser un desafío – especialmente en países con múltiples enfermedades transmitidas por mosquitos. Dengue, chikungunya y zika son virus transmitidos por el mismo tipo de mosquito, los tres virus están presentes en el Ecuador y en muchos otros países de América Latina y el Caribe. Pacientes infectados con uno de estos virus tienden a tener síntomas similares, indistintos lo cual puede dificultar al médico a determinar cuál enfermedad está afectando al paciente y qué pasos de tratamiento debe tomar. Lo más crítico es que el médico debe determinar si el paciente debería ser ingresado en el hospital para un monitoreo más cercano o si el paciente puede ser enviado a casa para descansar y recuperarse. No hospitalizar a un paciente enfermo puede ser un error mortal, pero enviar muchos pacientes a ser hospitalizados puede abrumar los sistemas de salud e incrementar los costos al sector de salud pública.

Una nueva investigación de predicción clínica a través de una colaboración entre el Quantitative Disease Ecology and Conservation (QDEC) Lab Group de la Universidad de Florida y la Universidad Médica de SUNY Upstate, prueba la capacidad del aprendizaje automático para predecir si estos pacientes deberían ser hospitalizados o no, utilizando la información del paciente recogido por el médico. El estudio, Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection, se publicó recientemente en PLoS Neglected Tropical Diseases y se completó mediante esfuerzos de colaboración entre estudiantes e investigadores de la Universidad de Florida, SUNY – Upstate, Universidad de Cornell y el Ministerio de Salud Pública de Ecuador. La información del paciente y los resultados de las pruebas de laboratorio se obtuvieron de los pacientes reclutados en un estudio de vigilancia de arbovirus en curso, así como también de cientos de registros médicos en papel que se procesaron mediante el aprendizaje automático.

El aprendizaje automático es un método donde los datos son usados para hacer predicciones aplicando un modelo o series de cálculos (llamados algoritmos) a los datos. Existen cientos de algoritmos de aprendizaje automático – algunos pueden funcionar realmente o pueden fallar por completo para hacer predicciones precisas para un conjunto de datos dados. “Nuestro enfoque es único en el sentido de que nosotros no asumimos que un algoritmo es superior – probamos y comparamos múltiples algoritmos para encontrar el que mejor funcione para nuestros datos” dice Dra. Rachel Sippy, una investigadora posdoctoral con QDEC y SUNY-Upstate y autora principal de la publicación. “Ahora que hemos encontrado un algoritmo que funciona bien con este tipo de información del paciente, podemos probarlo en nuevos grupos de pacientes y confirmar que funciona bajo muchas circunstancias.”

La investigación publicada sienta las bases para la creación de una herramienta que los médicos podrían usar como cabecera. Los autores visualizan una aplicación en teléfono donde los médicos ingresen los datos de los pacientes y reciban una recomendación para hospitalizar al paciente o enviarlos a casa. “Mientras la experiencia de los médicos podría nunca ser reemplazada con la aplicación, este tipo de herramientas de apoyo a la toma de decisiones puede proporcionar información adicional valiosa que puede tener en cuenta el médico quien se enfrenta a tomar una decisión potencialmente vital”, explica la Dra. Anna Stewart Ibarra, coautora de la publicación.

Lee Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection, en PLoS Neglected Tropical Diseases.

Media contact: Mike Ryan Simonovich

GAINESVILLE, FL – Fighting mosquito-borne disease can be costly – in both health and financial resources. While mosquito control is an effective way to combat the spread of diseases like dengue fever, the cost of spraying every house in a city quickly adds up. These costs limit public health vector control programs, which often operate on limited annual budgets.

The team of UF researchers used methods from transportation geography to model the most efficient driving routes from Ministry of Health mosquito control centers (black squares) to neighborhoods throughout the city of Machala, Ecuador.
El equipo de investigadores de la Universidad de Florida usó métodos de transportación geográfica para hacer una maqueta de las rutas más eficientes del Ministerio de Salud Pública de los centros del control del zancudo (cuadrados negros) hacia vecindarios en la ciudad de Machala, Ecuador.

New geospatial science research from the Quantitative Disease Ecology and Conservation (QDEC) Lab Group at the University of Florida aims to improve the efficiency of mosquito control programs by borrowing methods from transportation geography to solve medical geography problems – optimizing routes using road network analysis. The study, “A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador”, recently published in the International Journal of Health Geographics, was conducted in the city of Machala, Ecuador in collaboration with the Ecuadorian Ministry of Health. Locations with potentially higher risk of mosquito-borne disease activity were identified, and the researchers created models of the best delivery routes from ministry-operated mosquito control facilities and every neighborhood in Machala.

In addition to identifying the most efficient driving routes, the team also determined which control facility locations were ideal under different management priorities. Public health workers typically spray for mosquitoes in response to incoming disease cases reported to the health department. Instead, some neighborhoods could be targeted ahead of outbreaks based on environmental risk factors. Moving control facilities closer to at-risk neighborhoods translates into monetary savings. “Health ministry priorities and strategies may change over time,” says Cat Lippi, a PhD student in QDEC and lead author on the paper. “This work provides a new way for health officials to compare the delivery cost of different management strategies when developing their control programs.”

These models can be used to improve public vector control services and reduce operating costs. “The results of this study have implications beyond Ecuador – and beyond dengue,” says senior author Dr. Sadie Ryan, the principal investigator for QDEC. “The framework we present can be used by any agency that plans for intervention through mosquito control operators.”

Read A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador, at the International Journal of Health Geographics.

Nuevo Enfoque a través de la Red para la Distribución del Control del Zancudo rinde ideas en una Ciudad del Sur del Ecuador

GAINESVILLE, FL – Pelear contra enfermedades causadas por el zancudo puede ser costoso. Aún cuando el control del zancudo es una manera efectiva de combatir la propagación de enfermedades como la fiebre del dengue, el precio de fumigar cada casa en una ciudad aumenta las cifras de costo rápidamente. Estos costos limitan programas del control del vector para la salud pública, el mismo que opera con presupuestos muy limitados.

Investigaciones nuevas de ciencias geoespaciales de el Quantitative Disease Ecology and Conservation (QDEC) Lab Group de la Universidad de Florida tienen como objetivo mejorar la eficiencia de programas para el control del zancudo al métodos de la transportación geográfica para resolver problemas médicos basados en la geografía, optimizando rutas de análisis de la red. El estudio “A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador”, recientemente publicado en la Revista Internacional de la Geografía de la Salud, se llevó a cabo en la ciudad de Machala, Ecuador en colaboración con el Ministerio de Salud Pública del Ecuador. Se identificaron lugares con más potenciales de actividad de riesgo para la transmición de enfermedades causadas por zancudos, y los investigadores crearon modelos de las rutas de más eficacia, manejados por el ministerio, en el entrego de los servicios para el control del zancudo y todos los vecindarios de Machala

A más de identificar las rutas de entrega más eficientes, el equipo también determinó cuáles ubicaciones de servicio de control fueron las más ideales bajo diferentes prioridades de adminis

tración. Los trabajadores de salud pública típicamente fumigan para zancudos respondiendo a casos de enfermedades reportados al departamento de salud. En vez, algunos vecindarios podrían ser asistidos antes de un brote basado en riesgos del ambiente. El mover servicios de control más cerca a los vecindarios en riesgo se traduce como ahorros monetarios. “Las prioridades y estrategias del ministerio de salud pueden cambiar al pasar del tiempo,” dice Cat Lippi, estudiante de PhD en QDEC y autora que encabeza este estudio. “Este trabajo de investigación provee una nueva pauta para dirigentes de la salud para comparar el costo de entrega de diferentes estrategias de administración cuando desarrollan sus programas de control.”

Estos modelos pueden ser usados para mejorar servicios de control del vector y reducir costos de operación. “Los resultados de este estudio tienen implicaciones más allá del Ecuador – y más allá del dengue,” dice la autora mayor Dra. Sadie Ryan, la investigadora principal de QDEC. “El armazón que presentamos puede ser utilizado por cualquier agencia que planea la intervención a través de operadores de control del zancudo.”

Lee A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador, en International Journal of Health Geographics.

Media contact: Mike Ryan Simonovich

MedGeo researchers from the Quantitative Disease Ecology & Conservation Lab (QDEC Lab) and  Spatial Epidemiology & Ecology Research Laboratory (SEER Lab) made a strong showing at Emerging Pathogens Institute‘s EPI Research Day 2020!

QDEC Lab’s Stephanie Mundis presents Characterization of spatial and temporal factors related to Eastern Equine Encephalitis virus spillover in Orange County Florida
QDEC Lab’s Cat Lippi presents Social-ecological influences on dengue fever and a comparison of surveillance indicators in Machala, Ecuador
SEER Lab’s Dr. Michael Norris presents Estimating the local infectious zone and risk factors for anthrax transmission in West Texas
SEER Lab’s Dr. Michael Norris presents Alteration of exosporium surface oligosaccharides: Evidence of convergent patho-evolution in Bacillus anthracis
SEER Lab’s Dr. Michael Norris presents Seroprevalence of melioidosis among swine in two Vietnamese provinces
SEER Lab’s Maria Uribasterra presents White-tailed Deer Contact Rates on a High-fenced Property in Northern Florida
QDEC’s Dr. Rachel Sippy presents Prediction of Microsurveillance Using Machine Learning
QDEC’s Shreejana Bhattarai presents Evaluating vector control interventions to eliminate malaria from Nepal
QDEC’s Dr. Alexis White presents Applications and modeling of TickBot: a tick-killing robot

Yesterday, SEER Lab and QDEC Lab held an impromptu meeting in the GIS Teaching Lab (Turlington Hall 3006) to listen to David Quammen discuss the 2019-nCoV coronavirus emerging out of China on Fresh Air on NPR. David Quammen is a long-time science writer and the author of the 2012 non-fiction “Spillover”, which journals the pursuit of novel pathogens that spill from animal populations into humans.

Throughout our human history, zoonoses have crossed from animals to humans. Diseases such as anthrax (studied by SEER Lab), malaria (studied by QDEC), Ebola, and HIV are all examples of zoonoses. Malaria and HIV represent two examples of pathogens that have made the leap and now maintain human-to-human transmission. The available evidence suggests that 2019-nCoV is a bat virus that spilled into the human population through a wet market – a live animal/slaughter market in China. It is not yet known if or what intermediate host may have amplified the infection in humans, but new evidence suggests 2019-nCoV is successfully transmitting human-to-human.

Dr. Jose Miguel Ponciano, Associate Professor of Biology and SEER/QDEC collaborator, joined and shared his expertise in evaluating the genetic patterns of the available nCoV genome sequences being shared with the scientific community. Emerging diseases represent a perfect intersection of physical, human, and biogeography.

Interested in learning more? Check out the #MedGeo program in the department and come join us for our next MedGeo Brief.

GAINESVILLE – In the battle against vector borne disease, mosquito control using insecticides is an essential tool. But what happens when that tool starts to fail, and how do you know it? Insecticides are regularly used by public health agencies to reduce populations of blood-sucking mosquitoes. Effective control programs are important to public health because, in addition to posing a nuisance, mosquitoes can also spread diseases to humans. Insecticide resistance, where mosquitoes adapt to survive exposure to commonly-used chemicals, has become an increasingly pressing issue for many health agencies, undermining mosquito control efforts. New research by the Quantitative Disease Ecology and Conservation (QDEC) Lab Group at the University of Florida, the Center for Research on Health in Latin America (CISeAL) at Pontificia Universidad Católica del Ecuador (PUCE), the Institute for Global Health and Translational Science at SUNY Upstate Medical University, Escuela Superior Politécnica del Litoral (ESPOL), and the Universidad Técnica de Machala is the first attempt to investigate seasonal and geographic variations of mosquito insecticide resistance in southern coastal Ecuador, a region where mosquito control is key to stopping the spread of serious diseases like Zika and dengue fever. The study was funded by the U.S. Centers for Disease Control and Prevention (CDC). The team of researchers used both genetic screening and pesticide assays to evaluate insecticide resistance in mosquitoes collected in urban locations at different seasons. Differences in the resistance status of mosquitoes to the insecticides commonly used by the local health ministry were found both across collection seasons and across the four cities in the study area. Detected resistance to Malathion, deltamethrin, and alpha-cypermethrin was particularly high in the port city of Machala, which has a long history of dengue outbreaks and insecticide use. Information on insecticide resistance status, patterns, and timing will help local public health professionals design sustainable mosquito control programs that will continue to be effective in the fight against disease.

Read Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador, at PLoS Neglected Tropical Diseases.

La Resistencia a los Insecticidas Amenaza el Control de las Enfermedades Transmitidas por Mosquitos en Ecuador

GAINESVILLE – En la batalla contra las enfermedades transmitidas por vectores, el uso de insecticidas para el control de mosquito es una herramienta esencial. Pero ¿qué sucede cuando esa herramienta comienza a fallar y cómo lo sabe? Las agencias de salud pública utilizan regularmente los insecticidas para reducir las poblaciones de mosquitos que chupan la sangre. Los programas de control efectivos son importantes para la salud pública porque, además de ser una molestia, los mosquitos también pueden transmitir enfermedades a los humanos. La resistencia hacia los insecticidas, donde los mosquitos se adaptan para sobrevivir a la exposición a sustancias químicas de uso común, se ha convertido en un problema cada vez más urgente para muchas agencias de salud, desfavoreciendo los esfuerzos de control de mosquitos. Una nueva investigación realizada por el Grupo de Laboratorios de Ecología y Conservación de Enfermedades Cuantitativas (QDEC) en la Universidad de Florida, el Centro de Investigación para la Salud en América Latina (CISeAL) en la Pontificia Universidad Católica del Ecuador (PUCE), el Instituto de Salud Global y la Ciencia Traslacional en la Universidad Médica del Estado de SUNY, la Escuela Superior Politécnica del Litoral (ESPOL), y la Universidad Técnica de Machala es el primer intento en investigar las variaciones estacionales y geográficas sobre resistencia a insecticidas en mosquitos en la costa sur de Ecuador, una región donde el control de mosquitos es clave para detener la propagación de enfermedades graves como el Zika y el Dengue. El estudio fue financiado por los Centros para el Control y la Prevención de Enfermedades (CCPEEU). El equipo de investigación usó tanto análisis genético como los ensayos de pesticidas para evaluar la resistencia a insecticidas en los mosquitos recolectados en áreas urbanas, en diferentes estaciones. Diferencias en el estado de resistencia en mosquitos a los insecticidas comúnmente utilizados por el ministerio de salud local, se encontraron tanto en las diferentes temporadas de recolección, como en las cuatro ciudades dentro del área de estudio. La resistencia detectada al malatión, la deltametrina, y la alfa-cipermetrina fue particularmente alta en la ciudad portuaria de Machala, que tiene una larga historia de brotes de dengue y uso de insecticidas. La información sobre el estado de resistencia hacia insecticidas, los patrones y el tiempo ayudará a los profesionales de la salud pública local a diseñar programas sostenibles de control de mosquitos que continuarán siendo eficaces en la lucha contra la enfermedad.

Lee Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador, en PLoS Neglected Tropical Diseases.

 

Media contact: Mike Ryan Simonovich

Image credit: CDC/ Prof. Frank Hadley Collins, Dir., Cntr. for Global Health and Infectious Diseases, Univ. of Notre Dame/James Gathany

GAINESVILLE – Blood sucking insects such as the Yellow fever mosquito, Aedes aegypti, are more than just a nuisance in Ecuador, they also spread diseases such as dengue fever, chikungunya and Zika. A warming world means that public health officials must decide where to direct surveillance and mosquito control efforts not only today, but also decades down the road given dramatic shifts in mosquito habitat that will take place thanks to climate change.

Ecuadorian agencies now have a powerful helping hand: a recent paper in PLoS Neglected Tropical Diseases provides detailed maps forecasting where mosquitoes – and diseases – are likely to be in a warmer future.

The new work from the University of Florida’s Quantitative Disease Ecology & Conservation Lab Group (QDEC Lab) and the Emerging Pathogens Institute assesses the current and future geographic distribution of Ae. aegypti throughout Ecuador. The study was led by PhD Candidate Ms. Cat Lippi and is the result of a long-term collaboration with SUNY Upstate Medical University and the Ecuadorian Ministry of Health. Lippi’s committee chair, EPI researcher and QDEC founder Dr. Sadie Ryan, also contributed to the project, as did EPI investigator Dr. Jason Blackburn.

The research team repurposed historic larval mosquito surveillance data collected by the Ministry of Health between 2000 and 2012 in Ecuadorian households to predict where Ae. aegypti may occur in areas that have not yet been surveyed. Aedes aegypti mosquitoes are important because they are a vector for several different mosquito-borne diseases and are able to reproduce in small quantities of standing water, making them common in urban settings. The research team used environmental and climate modeling to analyze how areas currently suitable for the mosquito may shift in the future as a result of climate change.

Maps A and E show mosquito distribution today while maps B-D and F-H show where mosquitoes can be predicted in the future given different climate change scenarios.

“We wanted to show the Ministry of Health in Ecuador where disease-carrying mosquitoes might occur in the future,” Lippi says. By analyzing the environmental and climactic characteristics associated with where mosquitoes occur in Ecuador today, the team extrapolated where mosquitoes may occur in 2050 under a range of climate change scenarios and used the presence of these mosquitoes as a proxy for where disease would occur.

The models show that Ae. aegypti are likely to expand their range into regions of transitional elevation along the Andes mountain range by midcentury. The expanded habitat includes the portion of mountainous area where valley floors give way to a mountain’s lower slopes. The higher reaches of the Andes famed peaks are expected to remain protected pockets that will still be too cool, even with extreme warming, for Ae. aegypti to survive. At the same time, changing climate will reduce the mosquito’s range in the eastern portion of the country’s Amazon.

“When there is a population that has never been exposed to pathogens like dengue or Zika, they don’t have any immunity, and that population will be vastly more susceptible to an acute outbreak,” Lippi says. “There are thousands of Ecuadorians who will be exposed to mosquitoes in the future who have never had to deal with them before.”

The team will share their results with the Ecuadorian Ministry of Health, which will use the data to prepare for the future. Previous work through the team’s collaboration with Ecuador’s Ministry of Health showed that local knowledge and attitudes are significantly associated with the risk of Ae. aegypti mosquitoes in households in Ecuador, although effects on actual dengue fever risk are less clear. Mosquito-borne diseases pose a serious threat to public health throughout Ecuador and Latin America, where dengue alone accounts for an estimated 16 million infections occurring in the Americas each year.

“Our work gives their health department good forewarning of where to focus their preparations to prevent future outbreaks, and this will help them to conserve limited resources,” Lippi says. Preparations may include educational campaigns on using insect repellent, and window and door screens, as well as how to safely store household water in covered containers. The government can also coordinate spraying efforts to reduce mosquito larvae in the environment.

“Of course we expect to see changes in habitat and species’ ranges due to future climate change,” Lippi says. “But what this study addresses is the question of where those changes will occur, and how severe those changes may be, all within the context of disease risk to people.”

Un nuevo estudio de la Universidad de Florida (Estados Unidos) sugiere que los mosquitos que transmiten enfermedades podrían infectar a poblaciones humanas en Los Andes ecuatorianos debido al cambio climático

Comunidades en Latino América tienen el desafío de reducir la exposición a mosquitos que transmiten enfermedades, como el Aedes aegypti. En Ecuador, este mosquito es más que una molestia. El Aedes aegypti trasmite víruses que causan enfermedades de alta consideración para la salud pública incluyendo dengue, chikungunya y Zika. Dónde el Ministerio de Salud Publica (MSP) podría enfocar los esfuerzos de vigilancia y control de estos mosquitos, hoy y en el futuro, tomando en cuenta el cambio climático?

Un nuevo estudio del grupo, Ecología de Enfermedades y Conservación Cuantitativa (QDEC), de la Universidad de Florida, analiza la distribución geográfica del Aedes aegypti a través de todo Ecuador. El proyecto fue dirigido por Cat Lippi, estudiante de PhD de QDEC, y es el resultado de una colaboración a largo plazo con la Universidad del Estado de New York y Universidad Médica de “Upstate” (SUNY UPSTATE) y el MSP del Ecuador. El equipo de investigadores usó datos históricos de vigilancia de mosquitos recolectados por el MSP para predecir lugares donde Aedes aegypti podría estar presente. Áreas que no se ha inspeccionado de una manera activa y áreas donde podría estar presente en el futuro bajo condiciones de cambio climático. Modelos de “nicho ecológico” fueron creados usando información sobre lugares con la presencia actual del moquito y con variables básicos del ambiente. Los modelos fueron desarrollados usando condiciones climatológicas actuales y futuras, hasta el año 2050.

Este estudio muestra que lugares con elevaciones intermedias a lo largo de Los Andes pueden convertirse en zonas mas asequibles para la presencia de Aedes aegypti en el año 2050. Este descubrimiento sugiere que la población que actualmente viven en estas zonas de transición puede correr el riesgo, en el futuro, de ser expuesto a enfermedades transmitidas por mosquitos, como resultado de cambio climático. Los autores reportan que aumentará la población con riesgo de exposición por más de 12,000 personas bajo los escenarios extremos de cambio climático. Al mismo tiempo, los investigadores identificaron áreas que pueden ser menos propicias para los mosquitos, como la cuenca de la Amazonia.

Actualmente, la mayor parte de las personas que viven en Los Andes están protegidos por las enfermedades transmitidos por mosquitos debido a las altas elevaciones, lo que produce un ambiente frio y no apto para los moquitos. En situaciones extremas de cambio climático, los mosquitos pueden invadir nuevas lugares con elevación de 900 metros más alto que los lugares en actuales condiciones climatológicas. “Las personas que vivan en esta zona de expansión de enfermedades pueden ser más susceptibles a futuros brotes de enfermedades debido a varios factores, incluyendo falta de inmunidad debido a exposición previa al patógeno y falta de conocimiento y costumbres asociados con la prevención de mosquitos y costumbres de protección personal, como el uso de repelente,” indica Lippi. Estudios previos en colaboración con el MSP del Ecuador mostraron que el conocimiento y actitudes de las poblaciones locales están asociados con el riesgo de la presencia de Aedes aegypti en hogares en Machala. Se recomienda estudios en estos nuevas áreas de futuro riesgo.

Las enfermedades transmitidas por mosquitos son una amenaza para la salud pública en toda Latinoamérica, donde dengue causa aproximadamente 16 millones de infecciones anualmente. Estudios como éstos enfatizan la importancia de incorporar la ciencia de “Geografía de la salud” dentro de los estándares de la práctica de la educación pública, proveyendo información más precisa a las agencias de salud pública para mejorar el uso de escasos recursos para el de control de estas enfermedades y para desarrollar intervenciones de control vectorial y de educación pública en lugares específicos.

Media contact: Mike Ryan Simonovich

GAINESVILLE, FL – With its turquoise waters and abundant wildlife, Ecuador’s Galapagos Islands have long been a vacation dream of many. Tourist guides highlight playful sea lions and giant tortoises, but they do not talk about the mosquitoes. For the more than 30,000 people who live there, emerging epidemics of mosquito-borne disease such as dengue, Zika, and chikungunya, which causes fever and joint pain, are an ongoing threat.

A new Medical Geography study led by UF medical geographer Dr. Sadie J. Ryan, examined the social ecological factors associated with dengue fever and mosquito presence in the Galapagos Islands. This work by UF Geography’s Quantitative Disease Ecology & Conservation Lab Group, is the first of its kind conducted in the Galapagos, where dengue has been considered a newly emerging disease since cases were first detected in the early 2000’s.

Ryan collaborated with the Biosecurity Agency of the Galapagos and colleagues from the Universidad San Francisco de Quito, the Escuela Superior Politecnica del Litoral, and SUNY Upstate Medical University as well as UF Geography PhD Student Catherine Lippi and Postdoctoral Fellow Dr. Gabriella Hamerlinck. The team conducted household questionnaires and entomological surveys on the two most populated islands — Santa Cruz and San Cristobal. Statistical models were developed to identify the risk factors for the presence of self-reported dengue infection and Aedes aegypti, an invasive mosquito species that transmits dengue and other viral diseases.

Dengue fever is a serious disease throughout Ecuador and Latin America, with an estimated 16 million cases occurring in the Americas annually. Ryan emphasized, “The Galapagos Islands, and other island systems, present a unique challenge for vector control, given the difficulty in surveying and controlling mosquitoes across diverse landscapes separated by the ocean.”

Researchers found that the knowledge and attitudes of study participants were significantly associated with disease risk. They learned that water storage contributes to risk among island residents, but covering those containers reduces it. Because fresh water is scarce, the islands’ inhabitants store water in containers that attract mosquitoes that settle there. The study also found that human movement played an important role in dengue transmission, as people traveling between islands and traveling to the mainland may be exposed to the dengue virus and bring the disease back to their local communities.

“Our findings suggest that public health officials could develop targeted interventions that increase people’s knowledge of dengue transmission while changing their behaviors to prevent exposure to mosquito bites”, says Ryan.

This study has important implications for the formation of new health policies, providing localized information that will help reduce future outbreaks. Senior author, Anna Stewart-Ibarra of Upstate Medical University, says, “We need more research dedicated to understanding the health and well being of tens of thousands of local residents and hundreds of thousands of tourists who visit the Galápagos Islands each year, and how these health outcomes interact with the unique local ecosystems and wildlife populations.”

This is the first study of its kind in the Galapagos, and the first time household level risks of dengue have been rigorously explored off the mainland of Ecuador.

The study was published in the International Journal of Environmental and Public Health in a special issue on mosquito-borne diseases.

 

 

 

 

 

 

 

Congratulations to Emily Stone, recipient of an Emerging Scholars Award from the University of Florida’s Center for Undergraduate Research!

The Emerging Scholars program supports early undergraduate students who are interested in adding a research experience to their curriculum. The award provides two semesters of support to work on a research project with a UF faculty member.

Emily is working with Dr. Sadie Ryan and the QDEC lab in the Department of Geography to explore the impacts of socioeconomic status on Aedes albopictus size and insecticide resistance. Her project is part of a larger collaboration supported by the CDC Center of Excellence in Vector Borne Diseases. Emily is a sophomore microbiology major with goals of completing a PhD in infectious disease dynamics.

Stephanie Mundis teaching Oak Hall students about Kenya. Photo credit Abbey Farmer.

UF Geography PhD student Stephanie Mundis (QDEC Lab, Emerging Pathogens Institute) recently visited the second graders at Oak Hall School, where she gave a presentation on her past work in Kenya. The second graders of Oak Hall have been studying Kenya this semester in preparation for their singing performance at Oak Hall’s International Day. When Stephanie taught them some phrases in Swahili, they surprised her by breaking into song. We’re glad that Stephanie was able to share her experiences in Kenya with the children and we look forward to future outreach opportunities at Oak Hall.

Stephanie Mundis teaching Oak Hall students about Kenya. Photo credit Mike Ryan Simonovich.
Stephanie Mundis teaching Oak Hall students about Kenya. Photo credit Courtney Weber.