ALENEZI, GOODMEHEDYSpatial pattern analysis of manufacturing industries in Keraniganj, Dhaka, Bangladesh

Mohammad Mehedy Hassan, Meshari S. Alenezi, Ryan Z. Good

Article first published online: 01 JAN 2019 GeoJournal

DOI: 10.1007/s10708-018-9961-5

ABSTRACT: Understanding industrial clustering and its patterns of development are important steps in linking regional policy development, strategic decision making, business site management, and fostering a country’s economic growth. A considerable variety of common location-based cluster measures are available in practice, including area-based measures and a variety of indicators based on analyses of point data. This study uses the geostatistical approaches kernel density, multi-distance Reply’s-K, and spatial autocorrelation, both global Moran’s-I and local Moran’s-I, to assess the degree of spatial clustering of manufacturing locations in Keranignaj, located at the southern periphery of the urban region of Dhaka, Bangladesh. Results indicated a non-random pattern for all manufacturing locations in the study region. Small-scale industries such as garment manufacturing, metal, and brick making have a strong presence in Keranignaj. Expansion of such industries were highly associated with proximity to a river, while food processing, rubber and plastics manufacturing industries were clustered in relation to road proximity. The spatial association Global Moran’s-I with higher positive coefficient value indicates homogeneity, or spatial auto-correlation, exist in the industrial locations studied here. Local Moran’s-I, which documents regional clustering, has yielded a statistically significant manufacturing cluster (0.05 level) for the manufacturing areas of Zinjira, Kaliganj, Mirerbagh, and Chunkutia. Since cluster-based economic development has recently been an area of increasing interest for both developed and developing nations, the outcomes from this study provide an insight into spatial processes of industrial development in Bangladesh, and the Dhaka area in particular, enabling planners and policymakers to make rational, informed decisions and strengthening the economic growth and capacity for development of micro-industries clusters for the area studied here and the region beyond.

Read the full publication at GeoJournal

 

 

 

MEHEDYMonitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh

Mohammad Mehedy Hassan

Article first published online: 08 JUL 2017 Remote Sensing Applications: Society and Environment

DOI: 10.1016/j.rsase.2017.07.001

ABSTRACT: With little known and explored urban morphology in the fastest growing countries like Bangladesh in South Asia, this study aims at exploring urban spatial signature and explaining spatiotemporal land use and land cover patterns in the five cities (Rajshahi, Rangpur, Sylhet, Khulna, and Barisal) in Bangladesh. Using time series Landsat imagery, socioeconomic data and, other geospatial information with ecological analysis tools, this study quantifies and characterize the spatial-temporal landscape patterns and urban growth trajectory across the five selected sites. The spatial representation of these five sites demonstrates a continuous increase in urban/built-up areas replacing arable agricultural land, waterbodies, vegetation cover and wetlands, which thereby substantially altering the structure and function of the ecosystem surrounding the cities. Built up areas, representing impervious surface as observed from land cover maps in these five cities, are expanding quickly. The total built-up cover within the five cities grew from 2356 ha in 1973 to 13,435 ha in 2014 with a net increase of approximately 468%, while vegetation cover and crops field within same time period declined at 27.77% and 61.91%, respectively. This dramatic urban/built-up expansion has resulted in an increasingly faster alteration in the landscape composition causing to structural complexity at both class level and landscape level. Such rapid and unplanned urban expansion further has brought an overwhelming challenge to planners and policy makers, and has put a strain on local authorities to properly manage and utilize its limited land-based resources due to lack of time series geospatial information. The resulting thematic map and spatial information from this study is, therefore, to facilitate an understanding of urban growth dynamics and land cover change pattern in the five cities in Bangladesh. The result further can aid planners, stakeholders, and other interested groups to make the best possible choices regarding limited land-based resources to achieve an economically prosperous and environmentally sustainable future.

Read the full publication at Remote Sensing Applications: Society and Environment