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The global flow of air travel passengers varies over time and space, but analyses of these dynamics and their
integration into applications in the fields of economics, epidemiology and migration, for example, have been
constrained by a lack of data, given that air passenger flow data are often difficult and expensive to obtain.
Here, these dynamics are modeled at a monthly scale to provide an open-access spatio-temporally resolved
data source for research purposes (www.vbd-air.com/data). By refining an annual-scale model of Huang et al.
(2013), we developed a set of Poisson regressionmodels to predictmonthly passenger volumes between directly
connected airports during 2010. The models not only performed well in the United States with an overall
accuracy of 93%, but also showed a reasonable confidence in estimating air passenger volumes in other regions
of theworld. Using themodel outcomes, this research studied the spatio-temporal dynamics in the world airline
network (WAN) that previous analyses were unable to capture. Findings on the monthly variation of WAN offer
new knowledge for dynamic planning and strategy design to address global issues, such as disease pandemics
and climate change.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The worldwide airline network (WAN) has played a critical role in
contracting human societies into a global village through the rapid
transport of people, commodities and information over long distances.
Every year, on average 700 million passengers and $6.4 trillion goods
are carried by air (Guimerà et al., 2005; Tyler, 2013). Its tremendous im-
pacts on the global socio-economy have drawn increasing attention
from a variety of research fields, such as regional studies, international
trade, and transportation management (Derudder and Witlox, 2008;
Mahutga et al., 2010; O'Kelly and Miller, 1994). Recent reports have
also shown that the WAN is both directly and indirectly responsible
for inter- and intra-continental spread of diseases, such as the severe
acute respiratory syndrome (SARS), dengue fever, and novel H1N1
influenza (CIESIN, 2014; Khan et al., 2009; Lemey et al., 2014; Mangili
and Gendreau, 2005; Tatem et al., 2012), as well as the spread of inva-
sive species (Liebhold et al., 2006; Tatem, 2009). As theWAN continues
to expand at an exceptional rate, knowledge about its characteristics
and evolution is crucial for global economic development and disease
control (Bogoch et al., 2015; Derudder et al., 2008; Millard-Ball and
Schipper, 2011; O'Connor, 2003), among other factors.

As research interest in the WAN continues to grow, the availabil-
ity and completeness of air passenger flow data have become key
obstacles. To date, the available data sources can be summarized
into three categories. The first category refers to commercial
providers of worldwide aviation data, such as the International Air
Transport Association (IATA) and the Official Airline Guide (OAG).
Both the OAG and IATA have complete passenger origin and destina-
tion records for sale, but the price can be amounted to tens of
thousands in US dollars, along with rigorous restrictions for users.
The researchers may need to spend a fortune to obtain these data
and be prohibited from sharing them with others. As an alternative,
the second category of data sources follow the recent movement on
open data, which is a new idea that certain data should be freely
available to everyone to use and republish as they wish, without
restrictions from copyright, patents or other mechanisms of control.
There are a few number of open access data sources concerning the
global airline network, but all of them have limitations. The Skyscanner
for Business (http://business.skyscanner.net/portal/en-GB) offers
online API services to access live pricing and airfare search history, but
these data are not directly related to the real passenger origins and
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Table 1
Predictors for the monthly air passenger flows.

Predictors Descriptions

Node characteristics (Nodei,k or Nodej,k)
Popi The population size of airport i
PPPi The purchasing power index where airport i serves
In-degree i The number of incoming links airport i has in the airport

network
Out-degreei The number of outgoing links airport i has in the airport

network
Capacity_Ini Total incoming capacity of airport i
Capacity_Outi Total outgoing capacity of airport i
aBetweenness
Centralityi

The number of shortest paths going through airport i

Temperaturei Monthly average temperature of airport i.
Humidityi Monthly average humidity of airport i.
Precipitationi Monthly average precipitation of airport i.

Route characteristics (Routeij,l)
Inversed_Distanceij The inverse of the great circle distance between airport i

and j.
Capacityij The total seat capacity of routes between airport i and j.
Countryij Whether the airports i and j are in the same country or not.

a More detailed calculation of betweenness centrality can be referred to the Supplemen-
tary Material.
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destinations. The Openflights organization (Openflight.org) offers free
downloadable datasets, but they are only limited to airports and routes
with no details for passenger flows. The Sky Explore (http://geog-cura-
osgeo.asc.ohio-state.edu/t100/web/main.html) presents a WebGIS in-
terface to map real passenger flows from multiple data sources, but its
data coverage is confined in the North America and Europe.

Rather than releasing real data, the third category of data sources
comes from statistical models of air passenger flows (Grosche et al.,
2007; Johansson et al., 2011; Long, 1970; Wei and Hansen, 2006), and
the modeled flows are published for open access (Huang et al., 2013).
These existing models, however, are limited to predicting annual
aggregates of air passenger volumes, and thus represent the WAN as a
static structure during a year. In reality, the WAN is dynamic over
time and space given that passenger volumes fluctuate by month and
flight routes open/close by season (Feuerberg, 2008; Grubesic et al.,
2009). The data aggregation in current models hides the network
dynamics, which could otherwise provide insights into the spatio-
temporal patterns of various global processes, such as disease spread
and labor migration. For example, many diseases, such as the flu and
dengue fever, have seasonal dissemination patterns, and the annually
summarized air traffic data is not appropriate to predict the global
disease dispersion. The temporary labor migration also varies to fit
fluctuating job markets such as the tourism and agriculture, and hence
monthly air traffic would offer a more reliable estimation than the an-
nual aggregates. To date, few studies have been devoted to modeling
temporally-resolved air passenger flows over theWAN. As a result, little
analysis has been conducted on the fine-scale spatio-temporal variation
of the WAN within a year.

The purpose of this article is two-fold. First, we refined existing
models developed by Huang et al.(2013) to a finer temporal scale and
predicted the monthly air passenger flows between directly connected
airports worldwide. We also release the modeled monthly flows online
for open access. Second, we attempt to understand themonthlyWAN as
a dynamic by measuring the variation of air passenger flows by month,
by route, and by airport.
2. Methodology

2.1. Model design

The WAN was conceptualized as a collection of nodes and links,
where nodes represent airports and links represent flight routes
between airports. Many empirical studies have shown that air passen-
ger volume is proportional to the population size of the origin and
destination cities, and inversely proportional to the geographic distance
between origin and destination cities, similar to Isaac Newton's
gravitational interaction law (Grosche et al., 2007; Long, 1970;
Matsumoto, 2007). A gravity model, thus, can be utilized to estimate
the air passenger volume between any pair of nodes. Our model views
the air passenger flow as an outcome of spatial interactions between a
pair of origin and destination airports, which can be formulated into a
multiplicative function of node and link characteristics, as shown in
Eq. (1):

Pi j tð Þ ¼ S tð Þ∏
n

k¼1
Nodei;k tð Þαk tð Þ ∏

n

k¼1
Nodej;k tð Þβk tð Þ ∏

m

l¼1
Routei j;l tð Þγl tð Þ: ð1Þ

Where Pij(t) denotes the number of air passengers from airport i to
j during month t (t = 1, 2,…12). S(t) is a scaling constant. Nodei,k(t)
and Nodej,k(t) represent the kth characteristic during month t
regarding origin airport i and destination airport j respectively, for
instance, a socio-economic, demographic, meteorological and
network characteristic (Table 1). Routeij,l(t) is the lth measurement of
the linkage between airport i and j during month t, for example, the
great circle distance, seat capacity, flight frequency, and link type
(Table 1). The αk(t), βk(t), γl(t) are corresponding coefficients to be
estimated.

2.2. Data collection

2.2.1. Air passenger volume
For model development, we obtained monthly air passenger

numbers from the US Air Carrier Statistics T-100 domestic and inter-
national segments (www.transtats.bts.gov). These datasets contains
market data reported by both US and foreign air carriers, including
carrier, origin, and destination for enplaned passengers, freight and
mail when at least one point of service is in the US or one of its terri-
tories. The dataset of the year 2010 was selected to match the collec-
tion time of other data sources, such as the census data. The market
data were tabulated into 141,182 records with information
concerning the origin airport, destination airport, actual passenger
number, and month. In addition, the 2010 total passenger numbers
for the top 100 international airports across the world by passenger
volumewere downloaded from the ACI website (Airports Council In-
ternational, http://www.aci.aero/Data-Centre/Annual-Traffic-Data/
Passengers/2010-final). This dataset was used as an extra indepen-
dent source for model validation.

2.2.2. Airport locations and flight routes
Information on a total of 3416 airports across theworldwere obtain-

ed from the 2010 Flightstats database (www.fightstats.com), including
names, codes, and geographic coordinates (latitudes and longitudes).
To connect these airports into a network, flight routes were further
derived from the 2010 scheduled flight capacity dataset purchased
from the OAG (www.oag.com). This dataset provides information on
direct links (if a commercial flight is scheduled) of origin and destina-
tion airports, flight distances, and seat capacity by month for 2010.
The airport and route datasets were utilized to compute geographic
distances between airports, construct network graphs for each month
in 2010, and derive network measurements, such as the in-degree,
out-degree, and betweenness centrality.

2.2.3. Population size and economic index
The population data was obtained from the most recent Gridded

Population of the World, Version 4 (GPWv4), released by the Center
for International Earth Science Information Network (CIESIN, 2014).
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Table 2
Summary of sample data and cross validation results for each model.

Month Observed
number of
flight routes

Mean
passengers
per route

Lognormal
(RMSE,
MAE)

Poisson
(RMSE,
MAE)

Negative
binomial
(RMSE,
MAE)

January 2677 8088.5 1690, 900 1545, 830 1666, 878
February 2562 7803.4 1666, 886 1343, 771 1533, 836
March 2622 9656.2 1993, 983 1509, 807 1797, 917
April 2588 9373.8 2038, 997 1564, 851 1889, 936
May 2678 9348.7 2025, 1051 1730, 915 1952, 1030
June 2770 9578.2 2466, 1224 1996, 1040 2263, 1142
July 2754 10163.5 2649, 1312 2278, 1174 2517, 1255
August 2648 10144.6 2946, 1479 2604, 1321 2794, 1388
September 2563 9060.4 2853, 1460 2578, 1380 2819, 1444
October 2580 9742.3 3181, 1569 2787, 1461 3233, 1603
November 2595 9040.4 3245, 1652 2956, 1567 3171, 1641
December 2707 8861.7 3471, 1709 3078, 1585 3859, 1901
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The GPWv4 is a minimally-modeled gridded population data set
(30 arc-second resolution) that incorporates census population data
from the 2010 round of censuses. To extract the population size served
by airport, a 200 km buffer was created to reflect the upper distance
limit of the catchment area by two hour ground travel to the airport
(Lieshout, 2012). The buffer zone was superimposed onto the gridded
population dataset and a zonal aggregation was performed to extract
the potential serviceable population in the catchment area of the
airport.

For the economic development around an airport, a gridded map
with a cell resolution of 1° × 1° was obtained from the Geographically
based Economic database (G-Econ, http://gecon.yale.edu/). Each grid
cell shows the purchasing power parity (PPP) at the cell location
(Nordhaus, 2006). The PPP value closest to an airport was extracted
and divided by the population in the grid cell to estimate the PPP
value per capita for that airport.

2.2.4. Meteorological characteristics
Considering local climate as a driver of air travel, for example

through tourism (Bogoch et al., 2015), three climatic variables
were selected as airport characteristics, namely, the monthly aver-
age precipitation, temperature, and humidity. The data were
downloaded from the WorldClim website (www.worldclim.org) as
gridded surfaces of 1 × 1 km spatial resolution (Hijmans et al.,
2005). Airports were superimposed onto the grids to extract the
three climatic variables.

2.3. Model implementation

To identify the best fit model, the general gravity model (Eq. (1))
was transformed into three types of model specifications. The first
model was a log-normal model proposed by Balcan et al. (2009),
assuming that the natural log of the monthly air passenger volume
follows a normal distribution. A logarithm transformation was
performed on each numerical variable to maintain the configuration
of the gravity model. To improve performance, the model also
considered interaction terms between origin and destination nodes,
denoted as Interactionij, for example, the product between the total
populations of the origin and destination nodes. The first model took a
form of Eq. (2):

ln Pi j tð Þ� � ¼ β0 tð Þ þ
Xn

k¼1

αk tð Þ � ln Nodei;k tð Þ� �þ
Xn

k¼1

βk tð Þ � ln Nodej;k tð Þ� �

þ
Xm

l¼1

γl tð Þ � ln Routei j;l tð Þ� �

þ
Xq

p¼1

θp tð Þ � ln Interactioni j;p tð Þ� �þ εi j

where ln pi j tð Þ
h i

� Normal:

ð2Þ

The second model assumed that the monthly air passenger vol-
ume follows a Poisson distribution, as it is a count. Eq. (1) was trans-
formed into a simple Poisson regression model (Eq. (3)), which has
been used in the previous model developed by Johansson et al.
(2011). Since the passenger numbers on a flight can never exceed
the seat capacity, it is more appropriate to set the seat capacity as
an offset, rather than a regular covariate, with its coefficient
constrained to 1. Further, a dispersion parameter was added to ac-
count for the potential over-dispersion problem. This problem arises
from the Poisson distribution, which confines its variance to be equal
to its mean. For count data, the observed variance could in fact be
greater than the mean, known as over-dispersion. As formulated in
Eq. (3), adding a dispersion parameter ϕ allows the variance to
vary from the mean value μ, which may produce a better fit. If the es-
timated ϕ is close to 1, there is probably no over-dispersion problem
and vice versa.

ln E Pi j tð Þ� �� � ¼ β0 tð Þ þ ln Capacityi j tð Þ
h i

þ
Xn

k¼1

αk tð Þ � ln Nodei;k tð Þ� �

þ
Xn

k¼1

βk tð Þ � ln Nodej;k tð Þ� �

þ
Xm

l¼1

γl tð Þ � ln Routei j;l tð Þ� �

þ
Xq

p¼1

θp tð Þ � ln Interactioni j;p tð Þ� �

where Pi j tð Þ � Poisson μ;ϕð Þ; i:e:; Pr Pi j tð Þ ¼ y
� � ¼ μye−μ

y!
; y ¼ 0;1;2;⋯

E Pi j tð Þ� � ¼ μ and Var Pi j tð Þ� � ¼ ϕμ

ð3Þ

The thirdmodel is a negative binomial normal model, which is often
chosen when the Poisson regression has a poor fit. The model takes the
same form as Eq. (3) except that the Pij(t) follows a negative binomial
distribution instead of the Poisson distribution. This model can also ac-
commodate the over-dispersion problem for count data under some
circumstances.

2.4. Model selection and evaluation

For eachmodel and eachmonth, theUS air passenger data and all co-
variates were input into SAS 9.3 to estimate the model coefficients. The
evaluation ofmodel performance included a cross-validationwithin the
US to select the best model, and a validation beyond the US to gauge to
model accuracy. The cross-validation was performed as follows: one
tenth of observations were randomly selected and held as a testing
dataset; the rest of the observations were treated as a training set for
model fitting; after the model was built, predictions were made with
the testing dataset and then errors were further obtained by computing
the differences between the predicted and observed values. This process
was repeated 10 times, and the root mean squared error (RMSE) and
the mean absolute error (MAE) were computed as evaluation criteria.
Lower values of RMSE and MAE indicate a better fit of the model. The
model with the smallest RMSEs and MAEs was chosen for subsequent
spatio-temporal analysis.

To investigate the model prediction power beyond the US, the
best-fit model was expanded to estimate the worldwide passenger
flows. The model predicted passenger volumes were compared with
those observed at the top 100 world airports reported by the Airports
Council International (ACI). We only considered the top 100 world

http://gecon.yale.edu/
http://www.worldclim.org


Fig. 1.Diagnostic plots from the best fitmodel: a) the scatter plot formonthly observed air passengers versus the predicted; b) the residual plot against predictionswith a fitted smoothing
curve.
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airports here, because the ACI only releases these data freely. The Pear-
son correlation coefficient and the Spearman's rank correlation coeffi-
cient were employed for validation.

3. Results and discussion

3.1. Model selection and validation

For each month, the log-normal model produced the greatest RMSE
and MAE, followed by the negative binomial model and then the
Poisson model (Table 2). For this reason, the Poisson model was select-
ed as the best-fit model for subsequent analysis. Given that the average
number of transported passengers was 9239 per month per route, the
MAEs suggest that the average prediction error was roughly ±7% and
hence the average model accuracy was 93%.

The diagnostic plots (Fig. 1) compare the estimatedmonthly passen-
ger volumes with corresponding observations. A majority of paired
values fall close to the 45° line, indicating a good fit of the model
(Fig. 1a). With regard to the error distribution (Fig. 1b), the fitted
Fig. 2.A comparison ofmodel predictions to the observed airport traffics reported by the ACI in 2
for airport rankings.
curve almost coincides with the horizontal line (y = 0) showing that
the errors scatter randomly with no obvious biases or unusual patterns,
and hence the model is appropriate. The spatial distribution of predic-
tion uncertainty by route was also estimated and reported as a map in
the supplementary material (Fig. S1).

In addition to the cross validation, themonthly predictionswere also
aggregated into an annual total for each airport, and comparedwith the
observed annual passengers reported by the Airport Council Interna-
tional (ACI, 2011). Fig. 2 shows a high level of consistency between
our predictions and actual observations (correlation coefficients
N0.95), in terms of both themagnitude and the ranking order. Although
the model was built based on the US data, it can reasonably predict air
passenger volumes in other regions.

3.2. Model structure

The estimated coefficients of the Poisson model by month are pro-
vided in the supplementary material. In general, most variables were
statistically significant, with a few being significant throughout all 12
010. a) Pearson correlation analysis for passenger volumes; b) Ranked correlation analysis



Fig. 3. Regression coefficients by month for selected covariates. From panel a to c, the black bars indicate statistical significance at a level of 0.05, and gray bars indicate not statistically
significant.
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monthswhile somewere only significant in specificmonths in 2010. For
example, the inverse distance between two airports was statistically
significant in all monthly models (Fig. 3a), and shows a negative
Fig. 4. Estimated monthly variation of the WAN in terms of it's a) flight routes, b) passenger vo
association with air passengers, reflecting the distance-decay effect of
‘gravity’. The interaction term between the incoming capacities of origin
and destination airports was positively associated with the air
lume, c) airport rank by flight connections, and d) airport rank by passenger throughput.
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passenger volumes throughout the 12 months (Fig. 3b), implying more
passengers if there were larger airports at both ends of the journey. The
temperature at the destination is another driver of air travel (Fig. 3c).
During cold months in the northern hemisphere, such as from January to
April and fromOctober to December, the temperature was positively rela-
ted to the number of air passengers, suggesting that people tend to fly to
warmer places. However, the temperature had negative or no associations
with air travelers during the summermonths in the northern hemisphere
fromMay to September. Lastly, the scale parameter, defined as the square
root of the dispersion parameterϕ in Eq. (3), was estimated to range from
13 to 26 over the 12 months. The rising trend in Fig. 3d implies that the
WAN had an increasingly heterogeneous structure over the 12 months,
as the passenger volume varies more widely around its mean value.

3.3. Spatio-temporal dynamics

The predicted monthly air passengers of the WAN are included in
supplementary material II (data and video clip), and also published
Fig. 5. The estimated decrease (cold colors) and increase (warm colors) of passenger volume fro
changes. (For interpretation of the references to color in this figure legend, the reader is referr
online a part of the Vector-Borne Disease Airline Importation Risk
(VBD-Air) project (www.vbd-air.com/data/) for free download. Fig. 4
shows the monthly variation of the WAN in terms of its flight routes,
passenger volume, and role of airports. Based on the model estimates,
the monthly variations in air passenger flows can be roughly divided
into three stages in 2010. The first stage spanned from January to
March, characterized by the greatest number of flight routes, but the
shortest average flight distance and a low passenger volume (Fig. 4a
and b). These statistics suggest that stage 1 was dominated by short-
range flights and a low passenger volume per route.

The second stage (from April to October) was the peak season of
the entire year due to the largest number of passengers. It was also
featured by a substantial decrease in flight routes, but also an
increase in average flight distance. With fewer operating routes,
the number of passengers per route was larger than stage 1 implying
higher seat occupancy rates or larger carriers. The third stage
included the last two months of the year characterized by the fewest
passengers across the year. There was another significant drop in the
mMarch to April in 2010 (the transition from stage 1 to 2). Darker colors indicate greater
ed to the web version of this article.)

http://www.vbd-air.com/data/
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number of flight routes, but the average flight distance per route
remained longer than stage 1.

The varying roles of airports over months are also of interest, as
shown in Fig. 4c and d. The FRA (Frankfurt) was the most connected
airport (with the greatest number of flight routes connected to) in
most months, while the ATL (Atlanta) played as the busiest airport
(with the greatest passenger throughput), showing a concentration of
world air travel activities in Europe and North America. With regard
to the flight connections, the top 10 airports in Europe (e.g., FRA and
CDG) had higher ranks in the early months of the year, while in late
months their roles were gradually replaced by airports in the US, such
as the ATL and ORD (Chicago). This might be related to the flight route
reduction shown in Fig. 4a (More discussions later). The PEK (Beijing)
was the 2nd busiest airport during stage 1 and 3, but it was replaced
by the LHR (London) in stage 2, suggesting that a remarkable fall and
rise of passenger numbers in East Asia and Europe among stages
(More discussions later).

To further explain the temporal variations in Fig. 4, the air passenger
flows were mapped geographically to depict where the increase and
Fig. 6. The estimated decrease (cold colors) and increase (warm colors) of passenger volume fr
greater changes. (For interpretation of the references to color in this figure legend, the reader
decrease took place between the three stages of 2010. As shown in
Figs. 5 and 6, most changes were concentrated in the northern hemi-
sphere due to the majority of the world's population being distributed
there. From stage 1 (January toMarch) to stage 2 (April to October), sig-
nificant decreases in travelers were clustered in short-haul flights with-
in East and Southeast Asia (Fig. 5a). Meanwhile, a noticeable increase of
long-distance travelers was seen within the US and between Europe
and other continents (Fig. 5b). A possible reason is that the stage 2
spanned the late spring to fall in northern hemisphere, which had lon-
ger daytimes and warmer weather, and thus encouraged human activ-
ities (e.g., tourism) as well as long distance travels. To increase profits,
many short-haul flight routes were likely closed temporarily so that
the air carriers could be redistributed to serve medium or long-haul
routes, for example, the seasonal air routes between Philadelphia
(USA) and Barcelona (Spain), and between Atlanta (USA) and Athens
(Greece). In addition, the declining economic trends of the time of the
data used to construct the model were likely another reason for the re-
duced number of passengers, given its tremendous impact on airline in-
dustry. The global economy was contracting in 2010, and therefore it is
om October to November in 2010 (the transition from stage 2 to 3). Darker colors indicate
is referred to the web version of this article.)
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very possible that some variations were attributable to the economic
decline.

From stage 2 (April to October) to stage 3 (November to December),
there was an apparent shrink of passenger volumes within Europe,
between Europe and North America, and between Europe and Asia
(Fig. 6a). Those routes with reduced passengers were primarily long-
haul flights, possibly because the winter weather in the northern hemi-
sphere discouraged the demands for trans-continental travels. Only a
few flight routes had an increased passenger volume, and a majority
of themweremediumhaul flights toward tropical regions, for example,
Caribbean islands and Southeast Asia.

3.4. Limitations

Therewere several limitations of thismodelingwork thatmay intro-
duce uncertainties in estimation and bias in interpretation. First, the
flight datasets used in model building only record passenger informa-
tion on direct links between airports. Although the model is capable of
estimating the flows between airports separated by 2 or more stops,
the estimates could be biased to a certain degree. To address this
issue, additional datasets with passenger transfer information, such as
flight ticket databases, could be further included in the model. Second,
a simple 200 km catchment area was set to estimate the population
size served by an airport. The realistic travel time/distance to an airport
could vary by airport size, local economic size, population density, travel
means, etc. More sophistication should be introduced to delineate the
catchment area and better reflect the population sizes at the origin
and destination airports. Third, the number of air passengers was
assumed to be independent with one another between flight routes to
satisfy the assumption of linear regression models. This route indepen-
dence could be problematic, because the passenger numbers could be
related when one route is connected to the other. In future research,
the Airline Origin and Destination Survey (DB1B) data, which records
itinerary samples, can be further included in our model to account for
multiple-stop travels and dependence between flights. At last, the
selection of months as the basic temporal unit for modeling is an ad
hoc criterion thatmay impose newproblems. For instance, the air traffic
often peaks during long holiday periods and school breaks that may
cross months. Such fine-grained peaks might be evened in the monthly
model and maps.

4. Conclusions

The global flow of air travel passengers varies over time and space,
but analyses of these dynamics and their integration into applications
in the fields of regional studies, epidemiology and migration, for exam-
ple, have been constrained by a lack of data, given that air passenger
flowdata are often difficult and expensive to obtain. Here, these dynam-
ics are modeled at a monthly scale to provide an open-access spatio-
temporally resolved data source for research purposes.

The contributions of this research have covered two aspects. First,
Poisson regression models were developed to predict monthly passen-
ger volumes in theWAN,which refine theprevious annual scalemodels.
The models not only performed well in the United States, but also
showed good confidence in estimating air passenger volumes in other
regions. The proposed modeling approach can be extended to other
years too, if data of those years are available.

Second, the models and estimates are all shared online for re-
searchers to further reveal themonthly characteristics ofWAN that pre-
vious analyses were unable to capture. Existing studies have devised
various tools to understand yearly or quarterly evolution of WAN
(Feuerberg, 2008; Grubesic et al., 2009; O'Connor, 2003). These tools
help identify global roles of cities, evaluate population's accessibility to
air travel, and predict future geographic patterns. It would be interest-
ing to reexamine these topics with the same tools, but a closer lens at
the monthly scale. For instance, cities that play important roles in
somemonths, but not the entire year, can be revealed. The effects of sea-
sonal flight routes on theWAN structure can be investigated. The acces-
sibility to air travel can be assessed in a spatial and temporal manner.
Such fine-grained analyses onWANwould offer new knowledge for re-
gional planning or dynamic strategy design. For example, those cities
that are temporarily important for months in the WAN could be fast
growing nodes in the future regional development and are worth
attention from urban planners. The monthly assessment of accessibility
to air travelmay suggest dynamic airfare strategies tomitigate local and
regional biases in time and costs. The World Health Organization
can also identify possible high-risk routes for the next (few)
month(s) according to the monthly WAN structure and disease
prevalence, and then optimally focus its control efforts (e.g., airport
surveillance) to these routes.
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