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a b s t r a c t

This study compared three local cluster detection methods to identify local hotspots of human cutaneous
anthrax (HCA) transmission in the country of Georgia where cases have been steadily increasing since
the dissolution of the Soviet Union. Recent reports have indicated that the disease has reached historical
levels in 2012 highlighting the need for better informed policy recommendations and targeted control
measures. The purpose of this paper was to identify spatial clusters of HCA to aid in the implementation
of targeted public health interventions. At the same time, we compared the utility of different statistical
tests in identifying hotspots. We used the Getis-Ord ðG*

i ðdÞÞ, a multidirectional optimal ecotope-based
algorithm (AMOEBA) e a cluster morphology statistic, and the spatial scan statistic in SaTScan™. Data
on HCA cases from 2000 to 2012 at the community level were aggregated to an 8 � 8 km grid surface and
population data from the Global Rural and Urban Mapping Project (GRUMP) were used to calculate local
incidence. In general, there was agreement between tests in the locations of HCA hotspots. Significant
local clusters of high HCA incidence were identified in the southern, eastern and western regions of
Georgia. The G*

i ðdÞ and spatial scan statistics appeared more sensitive but less specific than the AMOEBA
algorithm. The scan statistic identified larger geographic areas as hotspots of transmission. In general, the
spatial scan statistic and G*

i ðdÞ performed well for spatial clusters with lower incidence rates, whereas
AMOEBA was well suited for defining local spatial clusters of higher HCA incidence. In resource con-
strained areas, efficient allocation of public health interventions is crucial. Our findings identified hot-
spots of HCA that can be used to target public health interventions such as livestock vaccination and
training on proper outbreak management. This paper illustrates the benefits of evaluating statistical
approaches for defining disease hotspots and highlights differences in these clustering approaches
applicable beyond public health studies.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Generally, spatial clustering statistics identify if, where, and the
spatial scale at which the spatial distribution of observed phe-
nomena significantly differs from an expectation of the distribution
of those phenomena under complete spatial randomness. When
applied to disease, clustering can be defined as an excess of re-
ported cases in space, time, or both space and time (hotspots)
(Jacquez, Waller, Grimson, & Wartenberg, 1996) or regions with
n).

Ltd. This is an open access article u
fewer than expected cases (cold spots); though these same statis-
tics can be applied broadly across spatial datasets. Broadly, these
statistical methods can be categorized into global, local, and focal
clustering. Global clustering tests, including the Moran's I (Moran,
1950) and the Ripley's K (Ripley, 1977) (to name a few commonly
applied in the literature), are used to evaluate whether events are
clustering over a study area, and in both cases the spatial scale at
which clustering is maximized. For example, Kracalik et al. (2013)
employed a spatial correlogram to plot Moran's I value measured
across a range of distance thresholds to illustrate the level of
clustering of anthrax cases in Georgia. Likewise, O'Brien et al.
(1999) described methods to define the maximum scale of clus-
tering for Ripley's K plots, such as comparing the difference
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between the observed and expected values across distances. These
techniques do not identify specific regions within a study area
where events are clustering, whereas local statistics can identify
the geographic position and spatial scale of clusters (Auchincloss,
Gebreab, Mair, & Diez Roux, 2012).

Local statistics encompass some of the commonly used distance-
based statistics in spatial epidemiology such as the G*

i ðdÞ statistics
of Getis and Ord (Getis & Ord, 1992; Ord & Getis, 1995), and the
spatial scan statistics (Kulldorff, 1997). For example, Kao, Getis,
Brodine, and Burns (2008) used the G*

i ðdÞ statistic to identify
spatial and temporal clusters of Kawasaki syndrome in San Diego,
California. DeGroote, Sugumaran, Brend, Tucker, and Bartholomay
(2008) used the G*

i ðdÞ to elucidate patterns of West Nile Virus
(WNV) incidence in Iowa. In the latter study, the authors used
different distance thresholds to identify the spatial extent of
transmission, finding that disease rates were clustered in the
western half of the state. Similarly, the spatial scan statistic has been
used to identify high risk clusters of pulmonary non-tuberculosis
mycobacterium in counties across the USA (Adjemian et al., 2012).
Focal statistics, on the other hand,may be used to explore clustering
of a disease around a specific location such as an environmental
pollutant (Jacquez, 2008) and may be modifications of these local
measures. For example, Clennon et al. (2004) evaluated local clus-
ters of human schistosomaisis in relation to specific water features
using a modification of the Getis-Ord statistic.

More recently, morphological spatial cluster detection tech-
niques have been developed to capture the shape of spatial clusters.
Some of these techniques include the following: a multidirectional
optimum ecotope-based algorithm (AMOEBA) (Aldstadt & Getis,
2006), the maxima-likelihood-first algorithm and the non-greedy
growth algorithm (Yao, Tang, & Zhan, 2011), the flexibly shaped
spatial scan statistic (FleXScan) (Tango & Takahashi, 2005), and the
cluster morphology analysis (CMA) (Jacquez, 2009). These tech-
niques employ search pattern algorithms to identify the shape of
clusters. For example, AMOEBA employs a search algorithm that
begins with a random seed on the landscape (in a given spatial unit)
and employs the Getis-Ord statistic to calculate a local statistic. It
then moves to a near neighbor and determines if that neighbor
increases the test statistic from the previous cell, if it does, the
cluster grows in that direction and the process iterates growing the
statistic across cells as they contribute to the cluster. This approach
differs from a traditional Getis-Ord statistic, which is traditionally
employed with a search defined by a circle of radius d (set in map
units) or using a contiguity matrix defining neighbor connections
based on a weights matrix. AMOEBA has been used to identify
cluster shapes of socioeconomic and physical environmental fac-
tors to identify continuous groupings or neighborhoods of charac-
teristics (Weeks, Getis, Hill, Agyei-Mensah, & Rain, 2010), and for
the detection of significant local clusters of livestock anthrax in
Kazakhstan (Kracalik et al., 2012).

In this current study, we apply local clustering techniques to
search for cluster of anthrax. Anthrax is a growing veterinary and
public health concern in the country of Georgia. Recent reports
have indicated a dramatic increase in the incidence of human
cutaneous anthrax (HCA) while livestock cases remain under-
reported (Kracalik, Malania, et al., 2014). The causative agent of the
disease, Bacillus anthracis, is a soil-borne bacterium with a
remarkable ability to survive in the environment for long periods of
time (Hugh-Jones & Blackburn, 2009). Studies have shown that the
geographic distribution of the bacterium is limited by a combina-
tion of environmental characteristics including soil pH, several soil
minerals, soil moisture, and temperature (Blackburn, McNyset,
Curtis, & Hugh-Jones, 2007; Griffin, Petrosky, Morman, & Luna,
2009; Griffin et al., 2014; Hugh-Jones & Blackburn, 2009; Kracalik
et al., 2012; Smith et al., 2000). Human transmission of anthrax is
generally a direct result of coming into contact with infected ani-
mals or contaminated materials, hence control of the disease in
humans is dependent upon targeting control efforts in animals.
Previous research in the neighboring country of Azerbaijan has
suggested that public health interventions such as anthrax live-
stock vaccination, and proper outbreak management can reduce
the occurrence of human cases (Kracalik, Abdullayev, et al., 2014).
Ideally, areas with a high incidence of livestock anthrax would be
targeted for control measures, however, in Georgia reporting is
anthropocentric, relying heavily on the dissemination of human
reporting (Kracalik, Malania, et al., 2014). To achieve more effective
levels of disease management, a recent study (Kracalik, Malania,
et al., 2014) has suggested that in resource constrained environ-
ments identifying hotspots of transmission may allow for a better
allocation of public health services.

As a case study comparing multiple spatial clustering ap-
proaches, we examine the distribution of HCA in the country of
Georgia. Given the countries limited resources, identifying hotspots
of anthrax transmission may allow for better allocation of public
health services, such as livestock vaccination. The availability of
high resolution (community-level) HCA data provides an oppor-
tunity to identify hotspots of human transmissionwhile comparing
the utility of three different statistical methods: the Getis-Ord
G*
i ðdÞ, AMOEBA, and the spatial scan statistic in SaTScan™. At the

same time, we comment on the differences in these tests that may
be useful for guiding future exploratory studies, including those
unrelated to public health.

Methods

Data processing

We used data on HCA cases reported at the community-level
from 2000 to 2012 in Georgia. A GIS database of 171 communities
with at least one reported HCA case was constructed in ArcGIS v10
for the time period 2000 to 2012. Locations of communities
reporting human anthrax were geocoded following Kracalik et al.
(2013) (Fig. 1). Here we aggregated the total cases per grid cell
using an 8 � 8 km spatial resolution. This size allowed us to test for
local spatial clusters with each statistic proposed. The calculation
the AMOEBA statistic is computationally intensive and would not
complete cluster detection at resolutions smaller than 8 � 8 km in
less than 10 days per iteration. Kracalik et al. (2012) also encoun-
tered a similar limitation when comparing the performance of
AMOEBA and G*

i ðdÞ in evaluating the spatial patterns of livestock in
Kazakhstan. Grid cells were generated for the entire country of
Georgia using the ‘genshapes’ command in the Geospatial
Modeling Environment (Beyer, 2012). HCA cases were aggregated
to the grid surface and each of the grid cells was considered the unit
of analysis for each given statistical test.

A population count grid for the year 2000 at the spatial reso-
lution 30 arc-second (~1 km) for the country of Georgia was
downloaded from the Global Rural-Urban Mapping Project
(GRUMP) website (http://sedac.ciesin.columbia.edu/data/
collection/grump-v1) to derive human population estimates per
grid cell using the zonal statistics routine in ArcGIS. Cumulative
HCA incidence was calculated by dividing the total number of
anthrax cases in each cell grid by the estimated median year pop-
ulation (2007). The population for the median year was derived
following Kracalik et al. (2013).

Smoothing crude incidence rates has been suggested to stabilize
variability in disease incidence rates caused by variations in the
numerators (e.g. numbers of cases) and denominators (such as
population at risk) (Kafadar, 1996). Empirical Bayes smoothing
(EBS) is one such method for stabilizing incidence rates before

http://sedac.ciesin.columbia.edu/data/collection/grump-v1
http://sedac.ciesin.columbia.edu/data/collection/grump-v1


Fig. 1. The distribution of human cutaneous anthrax (HCA) cases per village from 2000 to 2012 in the country of Georgia.
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mapping (Devine, Louis,& Halloran, 1994; Leyland & Davies, 2005).
Variation in HCA was expected in small spatial units, in particular
where case numbers were relatively high and the population size
relatively low. To account for this in Georgia, EBS was performed in
openGeoDa (Anselin&McCann, 2009). Smoothed rates per grid cell
were used for the Getis-Ord G*

i ðdÞ and AMOEBA statistic tests (see
below). SaTScan only accepts discrete data for the number of dis-
ease cases and the population at risk per geographic location as
inputs and derives rates as part of the modeling process (see
below).

Spatial analyses

Getis-Ord G*
i ðdÞ statistic

The Getis-Ord G*
i ðdÞ statistic was run using ArcGIS software (v.

10.1, Esri, Inc. Redlands, California, USA) to identify spatial clusters
of high HCA incidence. The G*

i ðdÞ statistic is defined as (Ord& Getis,
1995):

G*
i ðdÞ ¼

P
jwijðdÞxj �w*

i x

S
nh�

nS*1i

�
�w*2

i

i.
ðn� 1Þ

o1
2

where x is the mean of all human anthrax outbreaks within the
country; S is the standard deviation; n is the total number of grid
cells; wij is a binary weights matrix used to determine the spatial
structure and association among locations in the dataset; if the
distance from a neighbor j to the feature i is within the distance (d),
then wij ¼ 1; otherwise wij ¼ 0; w*

i ¼
P
j
wijðdÞ; S*1i ¼

P
j
w2

ij .
The Getis-Ord G*
i ðdÞ statistic repeated with d set at 5e100 km in

5 km intervals. The statistic is interpreted using standardized z-
scores to define hotspots of the variable of interest. Positive z-
scores indicate high values of the variable and low z-scores suggest
low values within a specified distance d of feature i (Getis & Ord,
1992). Clusters of high HCA incidence were defined at a particular
spatial distance if the z-score was greater than 3.18 (p � 0.001) and
the highest at that distance compared to the other shorter spatial
distances. To illustrate this, let us consider the G*

i ðdÞ values of a
single grid cell (expressed as the z-scores) at 20 km, 40 km and
60 km to be 3.75, 4.35, and 3.25 respectively. The cell will be
defined as a member of a spatial cluster will be defined at 40 km
since the highest z-score is observed at that distance. This approach
was suggested in Ord and Getis (1995) and Getis, Morrison, Gray,
and Scott (2003) to identify the distance at which spatial autocor-
relation is greatest. This is defined as the critical distance dc (Getis&
Aldstadt, 2010; Getis & Griffith, 2002; Kracalik et al., 2012).
AMOEBA statistic
The second method employed was AMOEBA (Aldstadt & Getis,

2006). AMOEBA is a clustering algorithm that uses G*
i ðdÞ values to

identify morphological spatial clusters (or ecotopes) of high or low
values (Aldstadt & Getis, 2006; Duque, Aldstadt, Velasquez, Franco,
& Betancourt, 2011). The algorithm calculates a G*

i ðdÞ value for each
cell i and for contiguous neighbor j. Then an iterative multidirec-
tional search identifies every neighboring cell j that maximizes
(either positively or negatively) the G*

i ðdÞ value for cell i. If the value
at i and a set of neighbors j is greater than the G*

i ðdÞ value for cell i
alone, then j, or j neighbors, is/are included to the ecotope (Aldstadt
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& Getis, 2006; Duque et al., 2011). This iterative process is repeated
until additional cells fail to increase the absolute value of the G*

i ðdÞ
statistic. The AMOEBA clustering algorithmwas performed with an
a ¼ 0.001 to define significance. AMOEBA allows of one of three
parameters for limiting the maximum size of a cluster: a Bonferr-
roni adjustment, the false discovery rate (FDR) and the core cutoff
(which is defined by a weights matrix). Kracalik et al. (2012) re-
ported an increase in the number of spatial units designated as
“outside of a cluster”, or units not identified as high or low. For this
study, we applied the core cut-off to limit the cluster size. We used
a distance-based weights matrix of 25 km to define spatial weights
(equivalent to three neighboring 8 � 8 km cells). The weights
matrix was constructed in SpaceStat (http://www.biomedware.
com). All neighbor grids within the threshold distance were
assigned a weight of 1, and those outside a weight of 0.
The circular spatial scan statistic
Third, we used the spatial scan statistic implemented in SaTS-

can™ (Kulldorff, 1997) to detect spatial clusters of high HCA inci-
dence.We employed the retrospective space-only Poissonmodel, as
it is appropriate for case and population data. The space-only
method employs circular moving windows of varying diameter,
each varying up to a maximum size of a user-defined population at
risk. Each circle is considered a potential candidate cluster. We used
five maximum spatial cluster sizes (10, 20, 30, 40, and 50% of the
population at risk) to identify different spatial cluster sizes. For each
window, SaTScan™ uses a Monte Carlo simulation to test the null
hypothesis that there was not an elevated risk of human anthrax.
The maximum number of replications for Monte Carlo simulation
was set to 999. The likelihood function under the Poisson assump-
tion for a specific window is proportional to (Kulldorff, 2011):

�
c

E½c�
�c� C � c

C � E½c�
�C�c

IðÞ

where C is the total number of anthrax outbreaks; c is the observed
number of anthrax outbreaks within the window; E[c] is the ex-
pected number of anthrax outbreaks within the window under the
null hypothesis; I() is an indicator function. When SaTScan is set to
scan only for clusters with high incidence rates, I() is equal to 1
when the window has more anthrax cases than the expected under
the null hypothesis.

The likelihood function is maximized over all window locations
and sizes. Thewindowwith the greatestmaximum likelihood value
constitutes the most likely cluster. The statistic was run using the
total observed anthrax cases and the median population per grid
cell for the time period 2000 to 2012.
Sensitivity analyses

Definition of true spatial clusters
For this study, we aimed to evaluate differences in the three

statistics for detecting clusters of HCA by deriving measures of
sensitivity and specificity. Toward this, we needed to provide a clear
definition of true spatial clusters. Spatial clusters have been defined
as an excess of cases in space, time, or space and time (Jacquez et al.,
1996) or “an aggregation of cases in an identifiable subpopulation”
(Wartenberg, 2001). In this study, we used smoothed incidence
rates to identify true spatial clusters. Because there is no clear
definition of the magnitude of clusters, we considered all grid cells
with smoothed incidence rates greater than or equal to the 95th
percentile as true spatial clusters, considering the suggestion of
Jacquez et al. (1996) that “true clusters explain fewer than 5% of all
reported clusters.”
Sensitivity, specificity and accuracy
We used sensitivity analyses to evaluate the performance of

each statistical test to correctly detect true spatial clusters charac-
terized by incidence rates greater than the 95th percentile (Tables 1
and 2). The proportion of grid cells that were correctly identified as
true spatial clusters was calculated following Fielding and Bell
(Fielding & Bell, 1997)

S ¼ a
ðaþ cÞ

where S is the sensitivity of a method; a is the total number of true
positive spatial clusters, and c is the total number of false negative
spatial clusters.

Additionally, the specificity test (Sp), which represents the
proportion of grid cells that were correctly identified as true
negative spatial clusters, and the accuracy test (A) illustrating the
proportion of true positive and negative spatial clusters for each
cluster detection method were defined by

Sp ¼ d
ðbþ dÞ

where Sp is the specificity of a method; d is the total number of true
negative spatial clusters, and b is the total number of false positive
spatial clusters.

A ¼ ðaþ dÞ
ðaþ bþ c þ dÞ

where A represents the accuracy of a cluster detection method.
The proportion of false positive (Fp) and false negative (Fn)

spatial clusters were calculated as

Fpð%Þ ¼ b
bþ d

� 100

Fnð%Þ ¼ c
aþ c

� 100

Results

Spatial clusters identified by G*
i ðdÞ, AMOEBA and the spatial scan

statistic are presented in Fig. 2. Hotspots of HCA were present
across Georgia. In general, the three statistics showed a pattern of
clustering in the east, west and south of Georgia. However, there
were noticeable differences between each of the three methods.

The AMOEBA clusters presented a similar spatial pattern to that
defined by G*

i ðdÞ. On the other hand, the spatial scan statistic
identified a larger portion of the landscape as part of significant
clusters located in the eastern, western and southern parts of
Georgia. Only the primary and secondary clusters obtained by the
spatial scan statistic at the maximum spatial cluster sizes �50% of
the population at risk are presented since the results were similar
with clusters at lower sizes of the population at risk (�40%). The
spatial scan statistic identified the greatest number of cells asso-
ciated with statistically significant local spatial clusters of HCA
incidence (primary þ secondary clusters: n ¼ 152), followed by the
G*
i ðdÞ statistic (n ¼ 118 cells) and AMOEBA, which detected the

fewest HCA clusters (n¼ 4 individual cells; Fig. 2). AMOEBA did not
identify any clusters with more than one grid cell. The G*

i ðdÞ sta-
tistic revealed that the geographic extent of significant spatial
clusters expanded toward the east with the increase of spatial
distances.

http://www.biomedware.com
http://www.biomedware.com


Table 1
Sensitivity analysis parameters and methods of computation for evaluating spatial clustering techniques to evaluate patterns of human cutaneous anthrax in Georgia.

Actual clusters Measures

Positive Negative Total Sensitivity Specificity Accuracy False positive False negative

Predicted clusters Positive TP (a) FP (b) a þ b a/(a þ c) b/(b þ d) (a þ d)/(a þ b þ c þ d) b/(b þ d) c/(a þ c)
Negative FN (c) TN (d) c þ d
Total a þ c b þ d a þ b þ c þ d
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The spatial scan statistic had the highest sensitivity value
(S¼ 58.93%) followed by G*

i ðdÞ and AMOEBA (Table 2). On the other
hand, AMOEBA was more accurate (A ¼ 95.67%) and specific
(Sp ¼ 100%) than G*

i ðdÞ and the spatial scan statistic. Furthermore,
AMOEBA did not detect false positive spatial clusters and had the
highest percentage of false negative spatial clusters followed by the
spatial scan statistic and G*

i ðdÞ. Fig. 3 presents the mean incidence
rates of all true spatial clusters for each spatial statistic. Higher
sensitivity values were inversely associated with lower mean
incidence rates.

Discussion

Anthrax has re-emerged as a public health threat in Georgia.
Previous studies have suggested that targeting hotspots of HCA
transmission may allow for the more efficacious use of limited re-
sources such as livestock vaccination (Kracalik, Malania, et al.,
2014). Properly identifying spatial clusters can aid in targeting the
distribution of such resources. In this study, we tested the perfor-
mance of three different local spatial cluster detection methods to
identify spatial clusters of high HCA incidence. Our findings show
that while HCA reports were widely distributed across the country,
high incidence was clustered on the landscape. In general, HCAwas
clustered in the southeast and in western Georgia, consistent with
previous research linking areas of persistence to environmental
and anthropogenic factors (Kracalik et al., 2013). Clustering in the
east corresponded to livestock migration routes, while in the west
clusters were associated with agricultural croplands.

The clustering of anthrax identified in our study has several
explanations. First, human cases are often a direct result of
handling sick animals, which have been shown to cluster in relation
to environmental factors such as alkaline soils (high pH) across
multiple landscapes and ecosystems (Kracalik et al., 2012; Smith
et al., 2000). Second, human cases are often related to agricul-
tural activities such as herding or working in abattoirs (Turnbull,
B€ohm, Hugh-Jones, & Melling, 2008). Interestingly, in Georgia
cases were, in general, clustered in two distinct geographic areas:
one associated with animal migrations in close proximity to urban
areas and one in croplands. These findings suggest there may be
two different epidemiologic patterns of transmission related to
geography. While there were distinct differences in the results of
the three spatial statistics used here, the clustered identified by
each support this hypothesis.

A major finding was related to differences in the sensitivity of
each method relative to its ability to identifying true spatial clus-
ters. Clusters defined by G*

i ðdÞ had high sensitivity out to ~40 km,
after this distance cell assignment to false clusters increased,
Table 2
Sensitivity measures for G*

i ðdÞ, AMOEBA, and the spatial scan statistics when examining

Tests Positive Total Negative Total

TP (a) FP (b) FN (c) TN (d)

AMOEBA 4 0 4 52 1144 1196
G*
i ðdÞ 19 99 118 37 1045 1082

SaTScan 33 119 152 23 1025 1048
suggesting that long distances decrease the likelihood of true
cluster membership. This finding is in line with previous research
that suggested transmission of HCA occurs across relatively short
distances (Chakraborty et al., 2012; Kracalik et al., 2013). In a
separate study of anthrax inwest Texas, Blackburn, Curtis, Hadfield,
and Hugh-Jones (2014) found similar patterns of highly localized
clusters (defined with the Getis-Ord statistic and a short dc) of
biting flies that may promote transmission in white-tailed deer,
Odocoileus virginianus, on that landscape. In this study, AMOEBA
had high specificity but only identified clusters with very high
incidence, which is in agreement with a recent study of livestock
anthrax in Kazakhstan (Kracalik et al., 2012). Aldstadt and Getis
(2006) also reported similar findings that AMOEBA was likely to
detect clusters of high values based on simulated data. On the other
hand, the spatial scan statistic had a high sensitivity when both
primary and secondary clusters were considered, but tended to
overestimate the cluster limits, as documented elsewhere
(Vazquez-Prokopec, Spillmann, Zaidenberg, Gürtler, & Kitron,
2012). Spatial agreement between the three statistics indicated
that all AMOEBA clusters were identified by at least one of the other
two tests (Fig. 4). In contrast, each G*

i ðdÞ and SaTScan™ identified
cells not identified by either of the other two tests. Clusters iden-
tified by each AMOEBA and one other statistic may be considered as
areas to prioritize for intervention efforts including targeted live-
stock vaccination campaigns and educational programs to inform
the public about anthrax risk in communities within these clusters.

Differences between tests are likely due to varying assumptions
of distribution and model parameters, resulting in the different
spatial clustering patterns observed in Fig. 2. For example, the
spatial scan statistic and the G*

i ðdÞ (as implemented here) searches
for spatial clusters with circular windows. SaTScan™ varies the
circular window size from 0 to amaximum limit set by the user. The
G*
i ðdÞwas limited to fixed search radii from 5 to 100 km. In contrast,

the AMOEBA algorithm uses a multidirectional search approach to
identify spatial clusters. Another important factor influencing the
spatial pattern of the identified clusters is the variation in how
thresholds were determined for each test (Openshaw & Taylor,
1979).

Based on our sensitivity analysis, there was evidence to support
the suggestion of Aldstadt and Getis (2006) that AMOEBA is more
sensitive to grid cells with higher incidence rates compared to the
spatial scan statistic, where spatial clusters had overall lower mean
incidence rates (Table 2) (Aldstadt & Getis, 2006). Jacquez (2009)
compared the statistical power of several cluster detection
methods and found that the spatial scan statistic had a higher po-
wer when compared to G*

i ðdÞ. We drew similar conclusions,
although we used different parameter settings in SaTScan™. The
patterns of human cutaneous anthrax in Georgia.

Measures

Sensitivity (%) Specificity (%) Accuracy (%) FP (%) FN (%)

7.14 100 95.67 0 92.86
33.93 91.35 88.67 8.65 66.07
58.93 89.6 88.17 10.4 41.07



Fig. 2. Spatial clusters of human cutaneous anthrax (HCA) incidence (based on 8 � 8 km cell) in Georgia from 2000 to 2012 using three spatial cluster detection methods: a) G*
i ðdÞ;

b) AMOEBA; and c) the spatial scan statistic. Open cells represent true clusters based on the definition of the upper 95th percentile of HCA incidence rates per cell.
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sensitivity and specificity of a cluster detection method, the per-
centage of false negative and false positive spatial clusters, can
guide the selection of a suitable cluster detection method in a given
study. In our analysis, the spatial scan statistic had the highest
overall sensitivity; hence, one would preferably suggest this
approach for the detection of true spatial clusters, although the
mean rates of disease within spatial clusters were lower.
Conversely, in spatial cluster studies, there is a tendency to prefer
false negative results to avoid false cluster alarms in community
residents (Wartenberg, 2001). This preference might make
AMOEBA appealing, as it had the highest percentage of false
negative and no false positive spatial clusters. Although it has been
demonstrated elsewhere, with simulated data points, that the
sensitivity to detect a spatial cluster decreased at coarser resolu-
tions (Ozonoff, Jeffery, Manjourides, White, & Pagano, 2007), this
study suggests that the sensitivity of a cluster detection method
rather depends on the nature of the spatial data to hand. However,
sensitivity and specificity will be affected by the definition of true
spatial clusters.

Some limitations of this study pertain to the computational time
of AMOEBA and the definition of cluster shapes by the spatial scan
statistic. AMOEBA has a high computational time, limiting the



Fig. 3. Sensitivity, specificity and mean incidence rates for clusters of human cutaneous anthrax (HCA) identified by G*
i ðdÞ, AMOEBA, and the spatial scan statistic.
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spatial scale of the analyses. Furthermore, we used smoothed
incidence rates to detect spatial clusters of human anthrax inci-
dence rates, using G*

i ðdÞ and AMOEBA. However, the discrete
Poisson model in SaTScan™ requires cases and population counts
for each location, and does not produce smoothed incidence rates.
Therefore, there might be a bias in the comparison of the sensitivity
of the three statistics. Despite these limitations, spatial clusters
identified in this study can inform targeted implementation of
surveillance and control measures for HCA in Georgia. Additionally,
Fig. 4. Spatial agreement between human cutaneous anthrax (HCA) clusters detected by G
three statistics are presented in green, red and yellow polygons. Open cells with black outli
incidence rates per cell. (For interpretation of the references to color in this figure legend,
these results may guide others in selecting cluster methods for
exploratory studies that extend beyond this single disease or
epidemiology.

In reality, researchers are often faced with challenging decisions
when selecting the appropriate statistical tests for defining these
clusters. Inherently, spatial statistics are complicated by issues of
aggregation and defining spatial relationships between spatial
units (e.g. weights matrices), and setting model parameters. Here
we illustrate that the selection of a test could also be informed by a
*
i ðdÞ, AMOEBA, and the spatial scan statistic. Overlapping spatial clusters between the
nes represent true clusters based on the definition of the upper 95th percentile of HCA
the reader is referred to the web version of this article.)
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priori knowledge on the desired level of sensitivity or specificity;
though we acknowledge that the definition of a true cluster needs
careful consideration. In this study, we illustrate how each of three
popular spatial statistics identify cluster of disease incidence from
real HCA reporting in Georgia. These tests differed in their identi-
fication of clusters, with AMOEBA identifying the fewest clusters
and only those with high disease incidence. We suggest that mul-
tiple tests be employed and that careful consideration be given to
whether investigators are interested in identifying regions of dis-
ease occurrence or only areas of highest incidence.
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