GAINESVILLE – In the battle against vector borne disease, mosquito control using insecticides is an essential tool. But what happens when that tool starts to fail, and how do you know it? Insecticides are regularly used by public health agencies to reduce populations of blood-sucking mosquitoes. Effective control programs are important to public health because, in addition to posing a nuisance, mosquitoes can also spread diseases to humans. Insecticide resistance, where mosquitoes adapt to survive exposure to commonly-used chemicals, has become an increasingly pressing issue for many health agencies, undermining mosquito control efforts. New research by the Quantitative Disease Ecology and Conservation (QDEC) Lab Group at the University of Florida, the Center for Research on Health in Latin America (CISeAL) at Pontificia Universidad Católica del Ecuador (PUCE), the Institute for Global Health and Translational Science at SUNY Upstate Medical University, Escuela Superior Politécnica del Litoral (ESPOL), and the Universidad Técnica de Machala is the first attempt to investigate seasonal and geographic variations of mosquito insecticide resistance in southern coastal Ecuador, a region where mosquito control is key to stopping the spread of serious diseases like Zika and dengue fever. The study was funded by the U.S. Centers for Disease Control and Prevention (CDC). The team of researchers used both genetic screening and pesticide assays to evaluate insecticide resistance in mosquitoes collected in urban locations at different seasons. Differences in the resistance status of mosquitoes to the insecticides commonly used by the local health ministry were found both across collection seasons and across the four cities in the study area. Detected resistance to Malathion, deltamethrin, and alpha-cypermethrin was particularly high in the port city of Machala, which has a long history of dengue outbreaks and insecticide use. Information on insecticide resistance status, patterns, and timing will help local public health professionals design sustainable mosquito control programs that will continue to be effective in the fight against disease.

Read Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador, at PLoS Neglected Tropical Diseases.

La Resistencia a los Insecticidas Amenaza el Control de las Enfermedades Transmitidas por Mosquitos en Ecuador

GAINESVILLE – En la batalla contra las enfermedades transmitidas por vectores, el uso de insecticidas para el control de mosquito es una herramienta esencial. Pero ¿qué sucede cuando esa herramienta comienza a fallar y cómo lo sabe? Las agencias de salud pública utilizan regularmente los insecticidas para reducir las poblaciones de mosquitos que chupan la sangre. Los programas de control efectivos son importantes para la salud pública porque, además de ser una molestia, los mosquitos también pueden transmitir enfermedades a los humanos. La resistencia hacia los insecticidas, donde los mosquitos se adaptan para sobrevivir a la exposición a sustancias químicas de uso común, se ha convertido en un problema cada vez más urgente para muchas agencias de salud, desfavoreciendo los esfuerzos de control de mosquitos. Una nueva investigación realizada por el Grupo de Laboratorios de Ecología y Conservación de Enfermedades Cuantitativas (QDEC) en la Universidad de Florida, el Centro de Investigación para la Salud en América Latina (CISeAL) en la Pontificia Universidad Católica del Ecuador (PUCE), el Instituto de Salud Global y la Ciencia Traslacional en la Universidad Médica del Estado de SUNY, la Escuela Superior Politécnica del Litoral (ESPOL), y la Universidad Técnica de Machala es el primer intento en investigar las variaciones estacionales y geográficas sobre resistencia a insecticidas en mosquitos en la costa sur de Ecuador, una región donde el control de mosquitos es clave para detener la propagación de enfermedades graves como el Zika y el Dengue. El estudio fue financiado por los Centros para el Control y la Prevención de Enfermedades (CCPEEU). El equipo de investigación usó tanto análisis genético como los ensayos de pesticidas para evaluar la resistencia a insecticidas en los mosquitos recolectados en áreas urbanas, en diferentes estaciones. Diferencias en el estado de resistencia en mosquitos a los insecticidas comúnmente utilizados por el ministerio de salud local, se encontraron tanto en las diferentes temporadas de recolección, como en las cuatro ciudades dentro del área de estudio. La resistencia detectada al malatión, la deltametrina, y la alfa-cipermetrina fue particularmente alta en la ciudad portuaria de Machala, que tiene una larga historia de brotes de dengue y uso de insecticidas. La información sobre el estado de resistencia hacia insecticidas, los patrones y el tiempo ayudará a los profesionales de la salud pública local a diseñar programas sostenibles de control de mosquitos que continuarán siendo eficaces en la lucha contra la enfermedad.

Lee Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador, en PLoS Neglected Tropical Diseases.

 

Media contact: Mike Ryan Simonovich

LIPPI, RYANNonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study

Rachel Lowe, Antonio Gasparrini, Cédric J. Van Meerbeeck, Catherine A. Lippi, Roché Mahon, Adrian R. Trotman, Leslie Rollock, Avery Q. J. Hinds, Sadie J. Ryan, Anna M. Stewart-Ibarra

Article first published online: 17 JUL 2018 PLOS Medicine

DOI: 10.1371/journal.pmed.1002613

ABSTRACT:

Background
Over the last 5 years (2013–2017), the Caribbean region has faced an unprecedented crisis of co-occurring epidemics of febrile illness due to arboviruses transmitted by the Aedes sp. mosquito (dengue, chikungunya, and Zika). Since 2013, the Caribbean island of Barbados has experienced 3 dengue outbreaks, 1 chikungunya outbreak, and 1 Zika fever outbreak. Prior studies have demonstrated that climate variability influences arbovirus transmission and vector population dynamics in the region, indicating the potential to develop public health interventions using climate information. The aim of this study is to quantify the nonlinear and delayed effects of climate indicators, such as drought and extreme rainfall, on dengue risk in Barbados from 1999 to 2016.

Methods and findings
Distributed lag nonlinear models (DLNMs) coupled with a hierarchal mixed-model framework were used to understand the exposure–lag–response association between dengue relative risk and key climate indicators, including the standardised precipitation index (SPI) and minimum temperature (Tmin). The model parameters were estimated in a Bayesian framework to produce probabilistic predictions of exceeding an island-specific outbreak threshold. The ability of the model to successfully detect outbreaks was assessed and compared to a baseline model, representative of standard dengue surveillance practice. Drought conditions were found to positively influence dengue relative risk at long lead times of up to 5 months, while excess rainfall increased the risk at shorter lead times between 1 and 2 months. The SPI averaged over a 6-month period (SPI-6), designed to monitor drought and extreme rainfall, better explained variations in dengue risk than monthly precipitation data measured in millimetres. Tmin was found to be a better predictor than mean and maximum temperature. Furthermore, including bidimensional exposure–lag–response functions of these indicators—rather than linear effects for individual lags—more appropriately described the climate–disease associations than traditional modelling approaches. In prediction mode, the model was successfully able to distinguish outbreaks from nonoutbreaks for most years, with an overall proportion of correct predictions (hits and correct rejections) of 86% (81%:91%) compared with 64% (58%:71%) for the baseline model. The ability of the model to predict dengue outbreaks in recent years was complicated by the lack of data on the emergence of new arboviruses, including chikungunya and Zika.

Conclusion
We present a modelling approach to infer the risk of dengue outbreaks given the cumulative effect of climate variations in the months leading up to an outbreak. By combining the dengue prediction model with climate indicators, which are routinely monitored and forecasted by the Regional Climate Centre (RCC) at the Caribbean Institute for Meteorology and Hydrology (CIMH), probabilistic dengue outlooks could be included in the Caribbean Health-Climatic Bulletin, issued on a quarterly basis to provide climate-smart decision-making guidance for Caribbean health practitioners. This flexible modelling approach could be extended to model the risk of dengue and other arboviruses in the Caribbean region.

Read the full publication at PLOS Medicine

 

 

 

 

 

BARRO, BLACKBURN – Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis

Alassane S. Barro, Mark Fegan , Barbara Moloney, Kelly Porter, Janine Muller, Simone Warner, Jason K. Blackburn

Article first published online: 09 JUN 2016 PLoS Neglected Tropical Diseases

DOI: 10.1371/journal.pntd.0004689

ABSTRACT: The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies.

Read the full publication at PLoS Neglected Tropical Diseases

RYAN – Knowledge, attitudes, and practices regarding dengue infection among public sector healthcare providers in Machala, Ecuador

Andrew S. Handel, Efraín Beltrán Ayala, Mercy J. Borbor-Cordova, Abigail G. Fessler, Julia L. Finkelstein, Roberto Xavier Robalino Espinoza, Sadie J. Ryan and Anna M. Stewart-Ibarra

Article first published online: 01 JUN 2016 Tropical Diseases, Travel Medicine and Vaccines

DOI: 10.1186/s40794-016-0024-y

ABSTRACT:

Background

Dengue fever is a rapidly emerging infection throughout the tropics and subtropics with extensive public health burden. Adequate training of healthcare providers is crucial to reducing infection incidence through patient education and collaboration with public health authorities. We examined how public sector healthcare providers in a dengue-endemic region of Ecuador view and manage dengue infections, with a focus on the 2009 World Health Organization (WHO) Dengue Guidelines.

Methods

A 37-item questionnaire of dengue knowledge, attitudes, and practices was developed and administered to dengue healthcare providers in Machala, Ecuador. Survey focus areas included: “Demographics,” “Infection and Prevention of Dengue,” “Dengue Diagnosis and the WHO Dengue Guide,” “Laboratory Testing,” “Treatment of Dengue,” and “Opinions Regarding Dengue.”

Results

A total of 76 healthcare providers participated in this study, of which 82 % were medical doctors and 14 % were nurses. Fifty-eight percent of healthcare professionals practiced in ambulatory clinics and 34 % worked in a hospital. Eighty-nine percent of respondents were familiar with the 2009 WHO Dengue Guidelines, and, within that group, 97 % reported that the WHO Dengue Guide was helpful in dengue diagnosis and clinical management. Knowledge gaps identified included Aedes aegypti mosquito feeding habits and dengue epidemiology. Individuals with greater dengue-related knowledge were more likely to consider dengue a major health problem. Only 22 % of respondents correctly reported that patients with comorbidities and dengue without warning signs require hospital admission, and 25 % of providers reported never admitting patients with dengue to the hospital. Twenty percent of providers reported rarely (≤25 % of cases) obtaining laboratory confirmation of dengue infection. Providers reported patient presumptive self-medication as an ongoing problem. Thirty-one percent of healthcare providers reported inadequate access to resources needed to diagnose and treat dengue.

Conclusion

Participants demonstrated a high level of knowledge of dengue symptoms and treatment, but additional training regarding prevention, diagnosis, and admission criteria is needed. Interventions should not only focus on increasing knowledge, but also encourage review of the WHO Dengue Guidelines, avoidance of presumptive self-medication, and recognition of dengue as a major health problem. This study provided an assessment tool that effectively captured healthcare providers’ knowledge and identified critical gaps in practice.

Read the full publication at Tropical Diseases, Travel Medicine and Vaccines

MOLLALOZoonotic cutaneous leishmaniasis in northeastern Iran: a GIS-based spatio-temporal multi-criteria decision-making approach

A. MOLLALO and E. KHODABANDEHLOO

Article first published online: 02 MAR 2016 Epidemiology & Infection

DOI: 10.1017/S0950268816000224

ABSTRACT: Zoonotic cutaneous leishmaniasis (ZCL) constitutes a serious public health problem in many parts of the world including Iran. This study was carried out to assess the risk of the disease in an endemic province by developing spatial environmentally based models in yearly intervals. To fill the gap of underestimated true burden of ZCL and short study period, analytical hierarchy process (AHP) and fuzzy AHP decision-making methods were used to determine the ZCL risk zones in a Geographic Information System platform. Generated risk maps showed that high-risk areas were predominantly located at the northern and northeastern parts in each of the three study years. Comparison of the generated risk maps with geocoded ZCL cases at the village level demonstrated that in both methods more than 90%, 70% and 80% of the cases occurred in high and very high risk areas for the years 2010, 2011, and 2012, respectively. Moreover, comparison of the risk categories with spatially averaged normalized difference vegetation index (NDVI) images and a digital elevation model of the study region indicated persistent strong negative relationships between these environmental variables and ZCL risk degrees. These findings identified more susceptible areas of ZCL and will help the monitoring of this zoonosis to be more targeted.

Read the full publication at Epidemiology & Infection.

BLACKBURN – Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti

Andrew Curtis, Jason K. Blackburn, Sarah L. Smiley, Minmin Yen, Andrew Camilli, Meer Taifur Alam, Afsar Ali, and  J. Glenn Morris

Article first published online: 03 Feb 2016 International Journal of Environmental Research and Public Health

DOI: 10.3390/ijerph13020187

ABSTRACT: The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains) to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens.

Read the full publication at International Journal of Environmental Research and Public Health

BLACKBURN, WALKERBiothreat Reduction and Economic Development: The Case of Animal Husbandry in Central Asia

Robert Walker and Jason Blackburn

Article first published online: 23 DEC 2015 Frontiers in Public Health

DOI: 10.3389/fpubh.2015.00270

ABSTRACT:

Improving human welfare is a critical global concern, but not always easy to achieve. Complications in this regard have been faced by the states of the Former Soviet Union, where socialist-style economic institutions have disappeared, and the transition to a market economy has been slow in coming. Lack of capital, ethnic conflict, and political instability have at times undermined the institutional reform that would be necessary to enable economic efficiency and development. Nowhere are such challenges more pronounced than in the new nation states of central Asia, including Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. Here, a severe climate limits agriculture, and industrialization has been inhibited by lack of infrastructure, low levels of human capital, and a scarcity of financial resources. These conditions are aggravated by the fact that the central Asian states are landlocked, far from centers of market demand and capital availability. Despite these daunting barriers, development potential does exist, and the goal of the paper is to consider central Asia’s pastoral economy, with a focus on Kazakhstan, which stands poised to become a regional growth pole. The article pursues its goal as follows. It first addresses the biothreat situation to central Asian livestock herds, the most significant existing impediment to realizing the full market potential of the region’s animal products. Next, it provides an outline of interventions that can reduce risk levels for key biothreats impacting central Asia, namely foot and mouth disease (FMD), which greatly impacts livestock and prohibits export, and Brucellosis, a bacterial zoonosis with high incidence in both humans and livestock in the region. Included is an important success story involving the FMD eradication programs in Brazil, which enabled an export boom in beef. After this comes a description of the epidemiological situation in Kazakhstan; here, the article considers the role of wildlife in acting as a possible disease reservoir, which presents a conservation issue for the Kazakhstani case. This is followed by a discussion of the role of science in threat reduction, particularly with respect to the potential offered by geospatial technologies to improve our epidemiological knowledge base. The article concludes with an assessment of the research that would be necessary to identify feasible pathways to develop the economic potential of central Asian livestock production as changes in policy are implemented and livestock health improves.

 

Read the full publication at Frontiers in Public Health

 

GEO 4938/6938 Applications of GIS for Spatial Epidemiology and Disease Ecology
GEO 4938/6938 Applications of GIS for Spatial Epidemiology and Disease Ecology

Spatial autocorrelation statistics to detect global and local patterns of spatial data

Medical geography
Public Health
Disease surveillance
Space-time metrics
Wildlife movements
Ecological niche modeling
 
Students from diverse interests and colleges have made this class an interesting mix of public health, ecology, medical geography, and spatial analysis. Over the past few years, at least 2 students per class have authored or co-authored papers developed out of class projects in this class.
 
If you want to get some hands-on applying spatial analysis to health or ecological data, this class is for you!

BLACKBURN – Spatio-temporal patterns of an anthrax outbreak in white-tailed deer, Odocoileus virginanus, and associated genetic diversity of Bacillus anthracis

Jocelyn C. Mullins, Matthew Van Ert, Ted Hadfield, Mikeljon P. Nikolich, Martin E. Hugh-Jones and Jason K. Blackburn

Article first published online: 15 December 2015 BCM Ecology

DOI: 10.1186/s12898-015-0054-8

ABSTRACT:

Background
Anthrax, a soil-borne zoonosis caused by the bacterium Bacillus anthracis, is enzootic in areas of North America with frequent outbreaks in west Texas. Despite a long history of study, pathogen transmission during natural outbreaks remains poorly understood. Here we combined case-level spatio-temporal analysis and high resolution genotyping to investigate anthrax transmission dynamics. Carcass locations from a single white-tailed deer, Odocoileus virginanus, outbreak were analyzed for spatial clustering using K-function analysis and directionality with trend surface analysis and the direction test.

Results
The directionalities were compared to results of high resolution genotyping. The results of the spatial clustering analyses, combined with deer movement data, suggest anthrax transmission events occur within limited spatial areas, with carcass locations occurring within the activity space of adjacent cases. The directionality of the outbreak paralleled adjacent dry river beds. Isolates from the outbreak were represented by a single genotype based on multiple locus variable number tandem repeat analysis (MLVA); four sub-genotypes were identified using single nucleotide repeat (SNR) analysis.

Conclusions
Areas of high transmission agreed spatially with areas of higher SNR genetic diversity; however, SNRs did not provide clear evidence of linear transmission. Overlap of case home ranges provides spatial and temporal support for localized transmission, which may include the role of necrophagous or hematophagous flies in outbreaks in this region. These results emphasize the need for active surveillance and prompt cleanup of anthrax carcasses to control anthrax both during outbreaks and between seasons.

Read the full publication at BCM Ecology